• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 14
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariate Analysis of Factors Regulating the Formation of Synthetic Allophane and Imogolite Nanoparticles

Bauer, McNeill John 30 August 2019 (has links)
Imogolite and allophane are nanosized aluminosilicates with high value in industrial and technological applications, however it remains unclear what factors control their formation and abundance in nature and in the lab. This work investigated the complex system of physical and chemical conditions that influence the formation of these nanominerals. Samples were synthesized and analyzed by powder x-ray diffraction, in situ and ex situ small angle x-ray scattering, and high-resolution transmission electron microscopy. Multivariate regression analysis combined with linear combination fitting of pXRD patterns was used to model the influence of different synthesis conditions including concentration, hydrolysis ratio and rate, and Al:Si elemental ratio on the particle size of the initial precipitate and on the phase abundances of the final products. The developed models described how increasing Al:Si ratio, particle size, and hydrolysis ratio increased the proportion of imogolite produced, while increasing the concentration of starting reagents decreased the final proportion. The model confidences were >99%, and explained 86 to 98% of the data variance. It was determined from the models that hydrolysis ratio was the strongest control on the final phase composition. The models also were able to consistently predict experimentally derived results from other studies. These results demonstrated the ability to use this approach to understand complex geochemical systems with competing influences, as well as provided insight into the formation of imogolite and allophane. / Master of Science / Allophane and imogolite are nanosized aluminosilicate minerals and strongly control the physical and chemical behavior of soil. They hold promise for use in technological applications. In nature, allophane and imogolite are often observed together in varying proportions. Similarly, laboratory synthesis by various methods usually does not result in pure phases. These observations suggest they form at the same time, at a wide range of solution chemical conditions. It remains unclear what factors determine how and when these phases form in solution, which limits our understanding of their occurrence in nature and the laboratory. The objective of this study is to understand and explain what solution chemical and physical conditions control the formation of synthetic imogolite and allophane. We did this by utilizing a unique approach where we systematically varied starting conditions of formation of these particles, and then used analytic and statistical methods to develop a model that describes the relationship between each of the starting conditions – concentration, size, pH, atomic ratios, and hydrolysis ratios, and how those affect the phase abundance of the particles.
2

Nanotubes d’imogolite et propriétés de l’eau confinée : organisation, structure et dynamique / Imogolite nanotubes and properties of confined water : organization, structure and dynamics

Amara, Mohamed Salah 15 December 2014 (has links)
Ce travail de thèse concerne l'étude des propriétés structurales et de confinement des nanotubes inorganiques d’imogolite. Ces nanotubes d’alumino-silicate et/ou germanate existent sous forme mono- et double-parois avec des diamètres de l’ordre du nanomètre. Nous avons étudié la synthèse de ces nanotubes et le contrôle de leur organisation, leur structure et leur déformation, ainsi que les propriétés de l’eau confinée.Dans les deux premiers chapitres, nous présentons un état de l’art sur les nanotubes d’imogolite et les différentes méthodes expérimentales utilisées. Dans le troisième chapitre, dédié à la synthèse des nanotubes et aux propriétés de nanotubes hybrides, nous présentons une nouvelle méthode de synthèse qui permet d’augmenter d’un ordre de grandeur la longueur des nanotubes double-parois et nous démontrons l’affinité du bromopropanol, une molécule organique, avec des nanotubes hybrides méthylés.Dans le chapitre suivant, nous nous focalisons sur la détermination de la structure atomique des différents nanotubes d’imogolite, naturels et synthétiques, à base de silicium ou de germanium, mono- et double-parois. Les résultats issus des modèles de minimisation géométrique développés sont confrontés, avec succès, à ceux de diffusion des rayons X expérimentaux aux petits et aux grands angles. Le contrôle de l’auto-organisation des nanotubes en poudre est présenté dans le cinquième chapitre. On y analyse de plus la déformation de la base des nanotubes selon leur état d’auto-organisation.Dans le dernier chapitre, nous décrivons le phénomène de déshydratation des imogolites. En combinant les résultats de diffusion des rayons X et de diffusion inélastique des neutrons, nous proposons la séquence de déshydratation suivante : eau externe ‒ eau confinée au centre de tubes ‒ eau liée. Ces deux derniers types d’eau présentent des caractéristiques spécifiques au niveau des modes de translation et de libration. / This work is dedicated to the study of the structure and to the confinement properties of water in imogolite nanotubes. These aluminosilicate (germanate) inorganic nanotubes exist as single (SW) and double-walled (DW) nanotubes with diameters in the nanometer range. This study concerns the synthesis of imogolite nanotubes, the control of their self-assembling, their structure and deformation, and the properties of confined water.In the first two chapters, we present the state of art on the subject and we describe the different experimental methods used in this work. The third chapter is dedicated to the synthesis of the nanotubes and the properties of hybrid nanotubes. We first present a new method of synthesis allowing the increase of an order of magnitude of the length of double-walled nanotubes; secondly, we demonstrate the affinity of the organic molecule bromopropanol with the methylated hybrid nanotubes.Next chapter focuses on the determination of the atomic structure of different types of imogolite: natural and synthetic, silicon or germanium-based, SW and DW. Results are obtained from computational models based on a geometrical structure minimization, in agreement with the results of small- and wide-angle X-Ray scattering experiments.In the next chapter, we explain how to control the self-assembling and organization of imogolites in powder. Moreover, we analyze the shape deformation of the nanotubes according to their organization.In the last chapter, we describe the behavior of confined water molecules in the imogolite powder as a function of temperature. By combining X-Ray and inelastic neutron scattering techniques, we propose the following sequence for dehydration: external water ‒ confined water in the tube center ‒ bounded water. Dynamical properties of confined and bounded waters are found to be drastically different.
3

Nanotube inorganique d'imogolite à cavité interne hydrophobe : synthèse, fonctionnalisation et encapsulation de molécules organiques / Inorganic Nanotube of Imogolite with an Internal Hydrophobic Cavity : Synthesis, Functionalisation and Encapsulation of Organic Molecules

Picot, Pierre 12 March 2019 (has links)
Dans ce travail, nous nous sommes intéressés à l’imogolite-méthylée, un nanotube dispersé en phase aqueuse avec une nanocavité hydrophobe.Nous avons tout d’abord étudié ses mécanismes de formation. A court terme, les premiers précipités formés se réorganisent en nanoobjets ayant la même structure locale que l’imogolite et dont la taille dépend des conditions de synthèses (concentration, précurseur). Ils conduisent à la formation d’objets cylindriques (imogolite) ou sphériques (allophane).Sur le long terme, nous avons observé que l’imogolite-méthylée coexiste avec des sous-produits (hydroxyde d’aluminium, proto-imogolite et allophane). En choisissant judicieusement les paramètres de synthèse (rapport molaire entre les précurseurs, température de synthèse) il est possible de réduire la proportion de ces sous-produits mais pas de les éliminer complétement.Ensuite, nous avons étudié la fonctionnalisation de ces nanotubes par substitution d’une partie des groupes méthyles internes par des groupes dopants. L’encapsulation de Nile Red, un colorant solvatochromique, dans la cavité interne des nanotubes hybrides a mis en évidence la fonctionnalisation des imogolites avec les différents groupes utilisés. Enfin, nous avons exploré l’encapsulation de molécules organiques (polaires, apolaires, solubles et insolubles dans l’eau) dans la cavité des nanotubes. Les courbes de diffusion X montrent que l’imogolite-méthylée piège toutes les molécules testées. De plus, les quantités adsorbées calculées sont comparables à celles mesurées dans le cas où des charbons actifs ou des zéolithes sont employés comme adsorbants. / In this work, we studied methyl-imogolite, an inorganic nanotube dispersed in water with a hydrophobic cavity.First, we examined the formation mechanisms. On a short time scale, the initial precipitates reorganize to give nano-objects with the same local structure as imogolite. Their size depends on the synthesis conditions (concentration, precursor) and could lead to the formation of cylindrical (imogolite) or spherical (allophane) objects.On a long time scale, we observed that methyl-imogolite coexists with byproducts (aluminum hydroxide, proto-imogolite and allophane). It is possible to reduce their proportion by wisely selecting the synthesis parameter (molar ratio between precursors, synthesis temperature). However, they cannot be fully eliminated. Then, we studied the functionalisation of this nanotube by substituting part of the internal methyl groups by doping ones. Encapsulation of Nile Red, a solvatochromic dye, in the internal cavity of these hybrid nanotubes highlighted the functionalisation of the imogolite with the various groups used.Finally, we investigated the encapsulation of organic molecules (polar, apolar, soluble or insoluble in water) in the nanotubes cavity. SAXS curves evidenced the trapping of all the molecules tested by methyl-imogolite. Moreover, calculated adsorption capacities are similar to the ones obtained when activated carbon or zeolites are used as adsorbents.
4

Nanotubes géo-inspirés : structure atomique, transformation en température et dynamiques corrélées nanotube-eau moléculaire / Geo-inspired nanotubes : atomic structure, transformation at high temperature and correlated dynamics nanotube-molecular water

Monet, Geoffrey 04 November 2019 (has links)
Ce travail de thèse est consacré à l’étude de nanotubes géo-inspirés des nanotubes d’imogolite naturels présents dans certains sols et à celle des propriétés dynamiques de l’eau dans ces objets. Les objets étudiés, de stoechiométrie Ge(Si)Al₂O₇H₄ et Ge(Si)Al₂O₆CH₆, sont des nanotubes d’aluminosilicate et d’aluminogermanate dont la paroi interne est tapissée soit de groupements hydroxyles, hydrophiles, soit de groupements méthyles, hydrophobes. Dans le premier chapitre de ce manuscrit, nous présentons un état des connaissances sur ces nanotubes et nous introduisons la thématique de l’eau confinée. Le second chapitre est consacré à l’analyse de la structure des nanotubes sur la base d’expériences de diffusion des rayons X sur poudre. Nous y introduisons une nouvelle méthodologie, fondée sur l’utilisation des symétries hélicoïdales et la minimisation d’une énergie semi-empirique, permettant de réduire la détermination d’une structure tubulaire complexe à l’évaluation de quelques paramètres géométriques. Grâce à cette procédure, nous déterminons la structure des nanotubes d’aluminosilicate et d’aluminogermanate méthylés et hydroxylés. En particulier, un mode d’enroulement différent pour les nanotubes méthylés et hydroxylés est mis en évidence. Dans le troisième chapitre, nous présentons l’étude expérimentale des transformations en température des nanotubes d’aluminogermanate hydroxylés, jusqu’à 1000°C, grâce à une approche multitechnique associant la spectroscopie d’absorption X in situ aux seuils K de l’aluminium et du germanium, la spectroscopie RMN, la spectroscopie infrarouge et la diffusion des rayons X. Le quatrième chapitre est consacré à l’étude de la dynamique de l’eau dans les nanotubes d’aluminogermanate hydroxylés et méthylés, par diffusion inélastique des neutrons. Dans le cas des nanotubes hydroxylés, les expériences sont analysées à la lumière de simulations de dynamique moléculaire. Nous montrons que l’eau liée à la paroi interne des nanotubes présente une structuration originale et que les dynamiques de l’eau et du nanotube sont fortement corrélées. / This thesis focuses on the investigation of nanotubes geo-inspired from natural imogolite nanotubes present in some soils and on the dynamical properties of water confined in these objects. These objects with nominal stoichiometry Ge(Si)Al₂O₇H₄ and Ge(Si)Al₂O₆CH₆, are aluminosilicate and aluminogermanate nanotubes whose inner wall is covered with either hydrophilic hydroxyl groups or hydrophobic methyl groups. In the first chapter of this manuscript, we present a state of knowledge on these nanotubes and introduce the topic of confined water. The second chapter is dedicated to the analysis of the structure of nanotubes thanks to X-ray powder scattering experiments. We introduce a new methodology, based on the use of helical symmetries and on the minimization of semi-empirical energy, which reduces the determination of a complex tubular structure to the evaluation of some geometric parameters. With this procedure, we solve the structure of both methylated and hydroxylated aluminosilicate and aluminogermanate nanotubes. In particular, a different rolling mode is highlighted for methylated and hydroxylated nanotubes. In the third chapter, we present the experimental study of the thermal transformations of hydroxylated aluminogermanate nanotubes, up to 1000°C. This work is the result of a multi-technical approach combining in situ X-ray absorption spectroscopy at the K thresholds of aluminium and germanium, NMR spectroscopy, infrared spectroscopy and X-ray scattering. The fourth chapter focuses on the study of water dynamics in hydroxylated and methylated aluminogermanate nanotubes by inelastic neutron scattering. For hydroxylated nanotubes, experiments are analyzed in the light of molecular dynamics simulations. We show that the water layer bound to the inner wall of the nanotubes presents an original structure and that the dynamics of water molecules and of the nanotube are strongly correlated.
5

Formation and growth mechanisms of single-walled metal oxide nanotubes

Yucelen, Gulfem Ipek 04 June 2012 (has links)
Single-walled metal oxide nanotubes have emerged as an important class of 'building block' materials for molecular recognition-based applications in catalysis, separations, sensing, and molecular encapsulation due to their vast range of potentially accessible compositions and structures, and their unique properties such as well-defined wall structure and porosity, tunable dimensions, and chemically modifiable interior and exterior surfaces. However, their widespread application will depend on the development of synthesis processes that can yield structurally and compositionally well-controlled nanotubes. Moreover, such processes should be amenable to scale-up and preferably operate via benign chemistries under mild conditions. There is currently very little knowledge on the molecular-level 'design rules' underlying the engineering of such materials. The capability to engineer single-walled tubular materials would lead to a range of structures, with novel properties relevant to diverse applications. In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. The class of aluminosilicate (AlSiOH)/germanate (AlGeOH) nanotubes are of particular interest to us, and serve as the exemplar materials for single-walled metal oxide nanotubes. They can be synthesized in pure form from inexpensive and easily accessible reactants at low temperatures (95 ˚C) from aqueous solutions. The synthesis of nanotubes occurs on a time-scale of hours to days, making them an ideal model system to study the nanotube formation mechanism. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 ˚C, disappear from the solution upon heating to 95 ˚C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Ångstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of shaped precursors. Having obtained considerable insight into aluminosilicate nanotube formation, in Chapter 4 the complex aqueous chemistry of nanotube-forming aluminogermanate solutions are examined. The aluminogermanate system is particularly interesting since it forms ultra-short nanotubes of lengths as small as ~20 nm. Insights into the underlying important mechanistic differences between aluminogermanate and aluminosilicate nanotube growth as well as structural differences in the final nanotube dimensions are provided. Furthermore, an experimental example of control over nanotube length is shown, using the understanding of the mechanistic differences, along with further suggestions for possible ways of controlling nanotube lengths. Ultimately, it is desired to produce the single-walled aluminosilicate nanotubes on a larger scale (e.g., kilogram or ton scales) for technological application. However, a quantitative multiscale understanding of nanotube growth via a detailed growth model, is critical to be able to predict and control key properties such as the length distribution and concentration of the nanotubes. Such a model can then be used to design liquid-phase reactors for scale-up of nanotube synthesis. In Chapter 5, a generalized kinetic model is formulated to describe the reactions leading to formation and growth of single-walled metal oxide nanotubes. This model is capable of explaining and predicting the evolution of nanotube populations as a function of kinetic parameters. It also allows considerable insight into meso/microscale nanotube growth processes. For example, it shows that two different mechanisms operate during nanotube growth: (1) growth by precursor addition, and (2) by oriented attachment of nanotubes to each other. In Chapter 6, a study of the structure of the nanotube walls is presented. It has usually been assumed in the literature that the nanotube wall is free of defects. A combination of 1H-29Si and 1H-27Al FSLG-HETCOR, 1H CRAMPS, and 1H-29Si CP/MAS NMR experiments were employed to evaluate the proton environments around Al and Si atoms during nanotube synthesis and in the final structure. The HETCOR experiments allowed to track the evolving Si and Al environments during the formation of the nanotubes from precursor species, and relate them to the Si and Al coordination environments found in the final nanotube structure. The 1H CRAMPS spectra of dehydrated aluminosilicate nanotubes revealed the proton environments in great detail. Integration of all the NMR results allows the structural assignment of all the chemical shifts and the identification of various types of defect structures in the aluminosilicate nanotube wall. In particular, five main types of defect structures are identified arising from specific atomic vacancies in the nanotube structure. It is estimated that ~16% of Si atoms in the nanotube inner wall are involved in a defect structure. The characterization of the detailed structure of the nanotube wall is expected to have significant implications for its chemical properties and applications. Chapter 7 contains concluding remarks, as well as suggestions for future directions in the engineering of single-walled nanotube materials.
6

Films multicouches nanocristaux de cellulose/Ge-Imogolite pour l'élaboration de nouveaux matériaux nanoporeux / Elaboration of cellulose nanocrystal/Ge-imogolite multilayered thin film to design new nanoporous materials

Mauroy, Cyprien 06 November 2017 (has links)
Lors des dix dernières années, les films multicouches ont suscité l’intérêt de la communauté scientifique pour leurs propriétés innovantes. Principalement issus de l’association de polyélectrolytes et/ou de nanoparticules de différentes morphologies, ils ont ouvert la voie à la fabrication d’une nouvelle catégorie de matériaux nanoporeux, possédant des propriétés optiques attractives telles que la coloration structurale et l’antireflet. Les films multicouches à base de deux nanoparticules de charges opposées sont plus rares et permettent de jumeler les propriétés des deux nanoparticules utilisées et d’en faire émerger de nouvelles. Dans cette étude, nous nous sommes intéressés à deux nanoparticules anisotropes, de facteurs d’aspects contrôlés et respectivement bio/geosourcées : les nanocristaux de cellulose (NCC) et des nanotubes d’imogolite. Le but de cette étude est d’étudier la possibilité de créer un film multicouche bio-géo inspiré à base de ces deux nanoparticules par immersion et d’en étudier les propriétés optiques. Dans un premier temps, nous avons comparé les films multicouches NCC/Ge-imogolites à ceux plus communément décrits dans la littérature, à savoir, des films à base de NCC ou d’imogolite associés à un polyélectrolyte de charge opposée. Les différents paramètres de trempage comme le temps d’immersion et la force ionique de la suspension ont été variés afin d’obtenir une densité de film optimale. Pour finir la porosité des films et leur comportement dans l’eau ont été étudiés par QCM-D, ainsi que leurs propriétés optiques par mesure de transmittance. / In the past decade, multilayer thin films drew the scientific community attention for their unique properties. Indeed, principally made of an association of polyelectrolytes and/or nanoparticles, of various morphologies and chemistries, they allow the design of a range of porous nanomaterials with unique optical properties, such as structural colors or anti-reflectivity. Less commonly described, thin films made of two nanoparticles of opposite charges are gaining interest since they combine the properties of the two nanoparticles used, and generate new ones through their association. In this study, multilayer coatings were formed through the association of two anisotropic oppositely charged nanorods of well-controlled aspect ratio, i.e. bio-based anionic cellulose nanocrystals (CNC) and geo-based cationic Imogolites. This study deals with the feasibility to create a bio-geo-inspired multilayer thin film based on these two nanoparticles by dipping and characterize their optical properties. Firstly, elaboration of multilayered thin films from CNC and Ge-Imogolites nanorods, were studied in comparison with reference films incorporating CNC or Imogolites with polyelectrolytes bearing opposite charges of the nanorods. Multilayered thin films were assembled by the dipping procedure and various parameters (adsorption time, ionic strength, etc.) were varied to investigate the optimal density for the film. To finish, film porosities were investigated using QCM-D, and optical properties were investigated by transmittance measurements.
7

Synthèse de particules composites anisotropes polymère / inorganique par polymérisation RAFT en émulsion / Synthesis of anisotropic polymer / inorganic composite particles via RAFT-mediated emulsion polymerization

Cenacchi Pereira, Ana Maria 05 June 2014 (has links)
Ces travaux décrivent l'élaboration de latex hybrides de polymère / nanotubes d'Imogolite et polymère / nanofeuillets d'hydroxydes doubles lamellaires (HDL) en milieu aqueux dispersé. Les deux charges inorganiques ont été choisies pour leurs propriétés thermiques, mécaniques et pour leur anisotropie de forme, ce qui pourrait permettre l'élaboration de films nanostructurés. Les latex ont été synthétisés par une stratégie originale basée sur le procédé de polymérisation RAFT en émulsion. Cette stratégie consiste à utiliser des copolymères hydrophiles (macroRAFT), comportant à la fois des unités d'acide acrylique et un groupe trithiocarbonate terminal, comme agents de couplage et stabilisants. Dans un premier temps, ces macroRAFTs ont été adsorbés à la surface des nanoparticules inorganiques, puis l'extension de ces chaînes a été réalisée par la polymérisation d'un monomère hydrophobe selon un procédé semi-batch. Des nanotubes d'Imogolite décorés de particules de latex ou des nanotubes d'Imogolite encapsulés ont été obtenus, selon les conditions de synthèse adoptées. L'effet de différents paramètres sur la morphologie finale des particules hybrides a été étudié. La nature de l'agent macroRAFT s'est avérée être un paramètre clé pour le succès de l'encapsulation. La même stratégie a été utilisée en vue de l'encapsulation des HDL. Quelles que soient les conditions investiguées, des latex stables contenant des particules d'HDL encapsulées par du polymère ont été formés. Dans tous les cas, la morphologie des latex nanocomposites a été caractérisée par MET et cryo-MET et reliée à la méthode de modification de la surface et aux conditions de polymérisation. Enfin, les propriétés mécaniques ainsi que la microstructure des films hybrides de polymère / nanotubes d'Imogolite ont été étudiées par DMA et MET, respectivement, et reliées à la morphologie des particules de latex / This work describes the elaboration of hybrid latexes of polymer / Imogolite nanotubes and polymer / layered double hydroxyde (LDH) nanosheets in aqueous dispersed media. The two inorganic materials were chosen as fillers for their thermal and mechanical properties and especially for their shape anisotropy, which could lead to the formation of nanostructured films. The latexes were synthesized through an original polymerization strategy based on the RAFT process in emulsion. The strategy consists in the use of hydrophilic random copolymers, containing acrylic acid units and a thiocarbonylthio end group, as both coupling agents and stabilizers. These copolymers, herein named macroRAFT agents, were tethered to the surface of the inorganic nanoparticles and chain extended by the polymerization of a hydrophobic monomer in a semi-batch process. Polymer-decorated Imogolite nanotubes or encapsulated nanotube bundles were obtained according to the process conditions. The effect of different parameters on the final morphology and latex stability was studied, and the macroRAFT nature was proven to be the key factor to achieve encapsulation. The same strategy was then applied to LDH materials. The different conditions tested all led to the encapsulation of the nanosheets. In both cases, the morphology of the nanocomposite latexes was characterized by TEM and cryo-TEM and correlated with the surface modification and the experimental conditions. The mechanical properties and the microstructure of hybrid films of polymer / Imogolite were studied by DMA and TEM, respectively, and correlated with the latex particles morphology
8

Nanoparticules naturelles : imogolites et allophanes. <br />Structure, mécanismes de croissance et capacité de rétention des éléments traces métalliques

Levard, Clément 02 December 2008 (has links) (PDF)
Cette étude vise à déterminer le transfert et la mobilité d'éléments traces métalliques (ETM), dans des sols de la Réunion destinés à l'épandage de déchets urbains. En plus des fortes teneurs naturelles en ETM, ces sols ont la particularité d'avoir une minéralogie très spécifique avec la présence en abondance de nanoparticules naturelles, communément appelés "imogolites" (nanotubes) et "allophanes" (nanosphères, ovoïdes, amorphe ?). Ces aluminosilicates structurés à courte distance sont susceptibles de piéger les ETM pouvant ainsi limiter leur mobilité et leur biodisponibilité. <br /><br />Dans un premier temps, une étude sur des composés synthétiques analogues aux aluminosilicates a permis d'approfondir nos connaissances sur la structure et les mécanismes de formation des imogolites et allophanes. La synthèse de nanotubes de type imogolite (Si-imogolite et Ge-imogolite) a pu être optimisée ouvrant ainsi les portes à de potentielles applications industrielles. Enfin, notre étude a permis de mettre en avant le rôle important des nanoparticules naturelles sur la dynamique du Ni dans un andosol de la Réunion. Ainsi, près de 80% du Ni est lié aux aluminosilicates structurés à courte distance.
9

Structure et croissance de nanotubes de Ge-imogolite simple et double-paroi

Maillet, Perrine 08 October 2010 (has links) (PDF)
Les Imogolites (OH)3Al2O3Si(OH) sont des minéraux naturels découverts en 1962 dans des sols volcaniques japonais qui présentent une structure analogue à celle des nanotubes de carbone. Leur synthèse, décrite depuis 1977, permet l'obtention de tubes bien calibrés et monodisperses. La récente mise en évidence de la possibilité de synthétiser des analogues au germanium en grande quantité en a fait un matériau de choix dans le cadre de mon sujet de thèse visant à préparer des matériaux mésoporeux à base de nanoparticules anisotropes. Lors de la caractérisation de ces imogolites par diffusion de rayons X aux petits angles (SAXS) et microscopie électronique en transmission (MET) et à force atomique (AFM), nous avons montré que ces analogues d'Imogolite sont bien des nanotubes, mais qu'ils existent sous deux formes : des tubes à paroi unique mais également des tubes à paroi double jamais observés à ce jour. La concentration importante utilisée pour cette synthèse a également permis de mieux définir l'espèce précurseur de ces nanotubes appelée proto-imogolite et mal connue jusqu'ici. Après une identification du paramètre déterminant la formation de l'une ou l'autre des structures, nous avons étudié en détail le mécanisme et la cinétique de croissance de ces imogolites. Enfin, des premiers tests sur l'organisation de ces nanotubes en forte concentration ou au sein de microgouttes permettent d'observer leur tendance à s'organiser, propriété prometteuse pour le développement futur d'applications.
10

Synthesis, Characterization, and Growth Mechanism of Single-Walled Metal Oxide Nanotubes

Mukherjee, Sanjoy 03 July 2007 (has links)
Nanotubes have numerous potential applications in areas such as biotechnology, electronics, photonics, catalysis and separations. There are several challenges to be overcome in order to realize their potential, such as: (1) Synthesis of monodisperse (in diameter and in length) single-walled nanotubes; (2) Quantitative understanding of the mechanism of formation and growth of nanotubes; (3) Capability to engineer the nanotube size; (4) Low temperature synthesis process; and (5) Synthesis of impurity free nanotubes. Our investigation focuses on a class of metal oxide (aluminosilicate/germanate) nanotubes, which are; single walled nanotubes with monodisperse inner and outer diameters, can be synthesized in the laboratory by a low temperature (95ºC) process in mildly acidic aqueous solutions, and their formation timescales is hours, which makes it convenient as a model system to study the mechanisms of nanotube formation. This work is focused on obtaining a qualitative and quantitative understanding of the mechanism of formation of aluminosilicate and aluminogermanate nanotubes. In order to achieve this overall objective, this thesis consists of the following aspects: (1) A systematic phenomenological study of the growth and structural properties of aluminosilicate and aluminogermanate nanotubes. The constant size and increasing nanotube concentration over the synthesis time strongly suggest that these nanotubular are assembled through self-assembly process. (II) Investigation of the mechanism of formation of single-walled aluminogermanate nanotubes provided the central phenomena underlying the formation of these nanostructures: (1) the generation (via pH control) of a precursor solution containing chemically bonded precursors, (2) the formation of amorphous nanoscale (~ 6 nm) condensates via temperature control, and (3) the self-assembly of short nanotubes from the amorphous nanoscale condensates. (III) Synthesis of mixed metal oxide (aluminosilicogermanate) nanotubes with precise control of elemental composition, diameter and length of the product nanotubes. (IV) Preliminary work towards generalization of the kinetic model developed for aluminogermanate nanotubes to a larger class of metal oxide nanotubes. It was found that the size of nanotubes is dependent on the amount of precursors that can be packed in a single ANP and in turn depends on the size of the ANP.

Page generated in 0.0656 seconds