• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hopkinson bar testing of cellular materials

Palamidi, Elisavet January 2010 (has links)
Cellular materials are often used as impact/blast attenuators due to their capacity to absorb kinetic energy when compressed to large strains. For such applications, three key material properties are the crushing stress, plateau stress and densification strain. The difficulties associated with obtaining these mechanical properties from dynamic/impact tests are outlined. The results of an experimental investigation of the quasi-static and dynamic mechanical properties of two types of cellular materials are reported.The dynamic tests were carried out using Hopkinson pressure bars. Experimentally determined propagation coefficients are employed to represent both dispersion and attenuation effects as stress waves travel along the bars. Propagation coefficients were determined for 20 mm and 40 mm diameter viscoelastic PMMA pressure bars and for elastic Magnesium pressure bars. The use of the elementary wave theory is shown to give satisfactory results for frequencies of up to approximately 15 kHz, 8 kHz and 30 kHz for the 20 mm and 40 mm diameter PMMA bars and the 23 mm diameter Magnesium bars respectively. The use of low impedance, viscoelastic pressure bars is shown to be preferable for testing low density, low strength materials.The quasi-static and dynamic compressive properties of balsa wood, Rohacell-51WF and Rohacell-110WF foams are investigated along all three principal directions. The dynamic properties were investigated by performing Split Hopkinson Pressure Bar (SHPB) and Direct Impact (DI) tests. In general, the crushing stress, the plateau stress and the densification strain remain constant with increasing strain rate of the SHPB tests. However, a dynamic enhancement of the crushing stress and plateau stress was revealed for balsa wood and Rohacell-51WF. In contrast, the plateau stresses of the Rohacell-110WF specimens are lower for SHPB than quasi-static tests. From the DI tests, it is shown that compaction waves have negligible effect on the stresses during dynamic compaction of along and across the grain balsa wood at impact speeds between approximately 20-100 m/s. Alternatively, the proximal end stresses of both Rohacell-51WF and 110WF foams increase with increasing impact velocity, following the quadratic trend predicted by 'shock theory'. This indicates that compaction waves are important for the case of Rohacell foam, even at low impact velocities.
2

Parametric Study of Mixture Component Contributions to Compressive Strength and Impact Energy Absorption Capacity of a High Strength Cementitious Mix with no Coarse Aggregate

Sarfin, Md. Abdullah Al 01 August 2019 (has links)
This research project has been undertaken to produce and characterize the behavior of High Strength Cementitious Mix (HSCM), which has considerably higher compressive strength compared to conventional concrete. Components of HSCM are cement, silica fume, sand, water, and high range water reducer. The material is tested for compressive strength and impact energy absorption capacity while the amount of above mentioned components are varied parametrically. The effect of these parameters are extensively studied and trends are reported. Finally, this research projects attempts to find correlations among compressive strength, compressive toughness, and impact toughness. Limitations of the experimental program are discussed and future direction for improvement and expansion of the research program is suggested.
3

Design of compliant mechanism lattice structures for impact energy absorption

Najmon, Joel Christian 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lattice structures have seen increasing use in several industries including automotive, aerospace, and construction. Lattice structures are lightweight and can achieve a wide range of mechanical behaviors through their inherent cellular design. Moreover, the unit cells of lattice structures can easily be meshed and conformed to a wide variety of volumes. Compliant mechanism make suitable micro-structures for units cells in lattice structures that are designed for impact energy absorption. The flexibility of compliant mechanisms allows for energy dissipation via straining of the members and also mitigates the effects of impact direction uncertainties. Density-based topology optimization methods can be used to synthesize compliant mechanisms. To aid with this task, a proposed optimization tool, coded in MATLAB, is created. The program is built on a modular structure and allows for the easy addition of new algorithms and objective functions beyond what is developed in this study. An adjacent investigation is also performed to determine the dependencies and trends of mechanical and geometric advantages of compliant mechanisms. The implications of such are discussed. The result of this study is a compliant mechanism lattice structure for impact energy absorption. The performance of this structure is analyzed through the application of it in a football helmet. Two types of unit cell compliant mechanisms are synthesized and assembled into three liner configurations. Helmet liners are further developed through a series of ballistic impact analysis simulations to determine the best lattice structure configuration and mechanism rubber hardness. The final liner is compared with a traditional expanded polypropylene foam liner to appraise the protection capabilities of the proposed lattice structure.

Page generated in 0.0972 seconds