• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 11
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 12
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A light scattering study of non-aqueous colloidal dispersions

Livsey, I. January 1985 (has links)
No description available.
2

Studies of fracture in nuclear graphite

Burchell, T. D. January 1986 (has links)
No description available.
3

Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices

Zhang, Botao January 2018 (has links)
No description available.
4

Simulationsgrenzerfahrungen : Simulation hochkomplexer Modelle ohne FEM

Bruns, Christoph 25 June 2015 (has links) (PDF)
Neue additive Fertigungsverfahren erzeugen hochkomplexe Strukturen deren strukturmechanische Eigenschaften bisher nicht vorhersagbar waren. Mit einem neuen Ansatz wird ohne Vernetzung wie sie in der FEM benötigt wird, eine Simulation des strukturmechanischen Verhaltens möglich. Erste Untersuchungen an bisher unvorstellbar komplexen Modellen zeigen eine hervorragende Performance, die gerade im Umfeld von typischen Gitterstrukturen der 3D-Druckverfahren einsetzbar sind und darüber weit hinausgehen. In diesem Vortrag wird anhand von Beispielen der hohe Wirkungsgrad der Software External aufgezeigt, der so in der FEM nicht möglich ist.
5

Výroba dílů s odlehčenou strukturou a topologickou optimalizací / Manufacturing of parts with lattice structure and topological optimization

Pospíšil, Jan January 2020 (has links)
This thesis deals vith the design of welding torch holder using topology optimization and lattice structure. The objective of this thesis is gaining knowledge about topology optimization in different software and aplication of methods to that part. Conclusion of this thesis is about production design and economic evaluation.
6

Design of compliant mechanism lattice structures for impact energy absorption

Najmon, Joel Christian 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lattice structures have seen increasing use in several industries including automotive, aerospace, and construction. Lattice structures are lightweight and can achieve a wide range of mechanical behaviors through their inherent cellular design. Moreover, the unit cells of lattice structures can easily be meshed and conformed to a wide variety of volumes. Compliant mechanism make suitable micro-structures for units cells in lattice structures that are designed for impact energy absorption. The flexibility of compliant mechanisms allows for energy dissipation via straining of the members and also mitigates the effects of impact direction uncertainties. Density-based topology optimization methods can be used to synthesize compliant mechanisms. To aid with this task, a proposed optimization tool, coded in MATLAB, is created. The program is built on a modular structure and allows for the easy addition of new algorithms and objective functions beyond what is developed in this study. An adjacent investigation is also performed to determine the dependencies and trends of mechanical and geometric advantages of compliant mechanisms. The implications of such are discussed. The result of this study is a compliant mechanism lattice structure for impact energy absorption. The performance of this structure is analyzed through the application of it in a football helmet. Two types of unit cell compliant mechanisms are synthesized and assembled into three liner configurations. Helmet liners are further developed through a series of ballistic impact analysis simulations to determine the best lattice structure configuration and mechanism rubber hardness. The final liner is compared with a traditional expanded polypropylene foam liner to appraise the protection capabilities of the proposed lattice structure.
7

Design of Functionally Graded BCC Type Lattice Structures Using B-spline Surfaces for Additive Manufacturing

Goel, Archak 09 July 2019 (has links)
No description available.
8

Structural and Molecular Design, Characterization and Deformation of 3D Printed Mechanical Metamaterials

Wu, Siqi January 2020 (has links)
No description available.
9

A DATABASE SYSTEM TO STORE AND RETRIEVE A CONCEPT LATTICE STRUCTURE

ASHOK, RAMYA January 2005 (has links)
No description available.
10

Process parameter optimization of M300 maraging steel and mechanical characterization of uniformly and selectively scaled M300 cellular structures

Petersen, Haley Elizabeth 10 May 2024 (has links) (PDF)
Laser powder bed fusion is a type of metal-based additive manufacturing method that can be customized for a given material through modification of process parameters, resulting in changes to the overall quality and mechanical properties of the as-built component. Optimal mechanical properties are typically achieved by performing experimental builds of fully dense components with multiple parameter sets and comparing the resulting mechanical properties. Additionally, AM allows geometric freedom that can be utilized to produce structures tailored for energy absorption, such as cellular structures or lattice structures. There is limited previous work of scaling effects on mechanical properties of cellular structures. The first part of this work aims to determine process parameters that result in the best overall mechanical properties of L-PBF manufactured maraging 300 steel. This work then uses the optimal parameters to produce cellular structures scaled both uniformly and selectively to perform mechanical and physical analysis on their response.

Page generated in 0.0464 seconds