• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 768
  • 527
  • 151
  • 147
  • 66
  • 33
  • 17
  • 12
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 2181
  • 684
  • 408
  • 352
  • 329
  • 264
  • 173
  • 151
  • 145
  • 142
  • 140
  • 134
  • 132
  • 124
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Salinity (conductivity) sensor based on parallel plate capacitors

Bhat, Shreyas 01 June 2005 (has links)
This work is aimed at developing a high sensitivity salinity (conductivity) sensor for marine applications. The principle of sensing involves the use of parallel plate capacitors, which minimizes the proximity effects associated with inductive measurement techniques. The barrier properties of two different materials, AZ5214 and Honeywell's ACCUFLO T3027, were investigated for use as the insulation layer for the sensor. Impedance analysis performed on the two coatings using Agilent's 4924A Precision Impedance Analyzer served to prove that ACCUFLO was a better dielectric material for this application when compared to AZ5214.Two separate detection circuits have been proposed for the salinity sensor. In the Twin-T filter method, a variation in capacitance tends to shift the resonant frequency of a Twin-T oscillator, comprising the sensor. Simulations of the oscillator circuit were performed using Pspice. Experiments were performed on calibrated ocean water samples of 34.996 psu and a shift of 410 Hz/psu was obtained. To avoid the problems associated with the frequency drift in the oscillator, an alternate detection scheme is proposed which employs frequency-to-voltage converters. The sensitivity of this detection scheme was observed to be 10 mV/psu.
302

Modeling, Analysis and Control of Voltage-Source Converter in Microgrids and HVDC

Xu, Ling 01 January 2013 (has links)
The objective of this dissertation is to carry out dynamic modeling, analysis and control for Voltage-Source Converters (VSC). Two major applications of VSC will be investigated in this dissertation: microgrid application and High Voltage Direct Current (HVDC) application. In microgrid applications, VSC is used to integrate distributed energy sources such as battery and provide system functions: such as real and reactive power regulation, voltage and frequency support during islanding condition, and abnormal system condition mitigation. In HVDC applications, VSC is used to interconnect dc systems with ac systems. The functions supplied by VSC are similar to that in microgrids. However, the transfer capability and stability in such kind of system are of major interests. Therefore, Part I of this dissertation focuses on VSC's applications in microgrids. A battery's inverter can be operated in both grid-connected PQ regulation mode and voltage and frequency support mode during islanding condition. Transition scheme between these two control modes is firstly investigated to guarantee a smooth dynamic performance. Secondly, a coordinated control strategy between battery's and PV station's VSCs is developed to improve microgrid's power flow. Thirdly, power quality improvement through the battery's inverter is investigated. VSC's control and capability for microgrid operation at normal, transient, and abnormal conditions will be modeled and analyzed. Part II of this dissertation focuses on VSC's applications in HVDC. The following topics are investigated in this dissertation: (i) how to design VSC-HVDC's controller using system identification method? (ii) How to coordinate VSCs in multi-terminal HVDC scenarios? And (iii) how to determine VSC-HVDC system's transfer capability based on stability limits? High-fidelity simulation technology is employed to tackle control validation while frequency domain impedance modeling technique is employed to develop analytical models for the systems. With linear system analysis tools such as Nyquist plots and Bode plots, stability limits and impacting factors of VSC-HVDC systems can be identified. This dissertation led to four journal papers (two accepted, one request of revision, one to submit) and five conference papers. The major contributions of this dissertation include: 1) Developed VSC and microgrid models in high-fidelity simulation environment. Developed and validated VSC control schemes for variety of microgrid operations: normal, abnormal, and transient. The developed technologies can facilitate a battery to make up solar power, improve system dynamic performance during transients, and improve power quality. 2) Developed VSC-HVDC simulation models, including two-terminal HVDC and multi-terminal HVDC. Developed VSC-HVDC control schemes for two-terminal and multi-terminal systems. Developed analytical impedance models for VSC-HVDC systems and successfully carried out stability limit identification.
303

Integrated impedance spectroscopy biosensors

Manickam, Arun 11 July 2012 (has links)
Affinity-based biosensors, or in short biosensors, are extremely powerful and versatile analytical tools which are used for the detection of a wide variety of bio-molecules. In recent times, there has been a need for developing low-cost and portable affinity-based biosensor platforms. Such systems need to have a high density of detection sites (i.e biosensing elements) in order to simultaneously detect multiple analytes in a single sample. This has led to the creation of integrated biosensors, which make use of integrated circuits (ICs) for bio-molecular detection. In such systems, it has been demonstrated that by taking advantage of the capabilities of semiconductor and very large scale integrated (VLSI) circuit fabrication processes, it is possible to build compact miniaturized biosensors, which can be used in wide variety of applications such as in molecular diagnostics and for environmental monitoring. Among the various detection modalities for biosensors, Electrochemical Impedance Spectroscopy (EIS) permits real-time detection and has label-free detection capabilities. EIS is fully electronic in nature. Hence, it can be implemented using standard IC technologies. The versatility and ease of integration of EIS makes it a promising candidate for developing integrated biosensor platforms. In this thesis, we first examine the underlying principles of EIS method of biosensing. By analyzing an immunosensor assay as an example, we show that EIS based biosensing is a highly sensitive detection method, which can be used for the detection of a wide variety of analytes. Since EIS relies on small impedance changes in order to perform detection, it requires highly accurate models for the electrode-electrolyte systems. Hence, we also introduce a compact modeling technique for the distributed electrode-electrolyte systems with non-uniform electric fields, which is capable of modelling noise and other non-idealities in EIS. In the second part of this thesis, we describe the design and implementation of an integrated EIS biosensor array, built using a standard complementary metal-oxide-semiconductor (CMOS) process. The chip is capable of measuring admittance values as small as 10nS and has a wide dynamic range (90dB) over a wide range of frequencies (10Hz-50MHz). We also report the results obtained from the DNA and protein detection experiments performed using this chip. / text
304

Optimized multi-stage amplifier compensation method for wide load variations

Marijanovic, Srdjan 30 October 2012 (has links)
Due to variations in process, voltage, and temperature (PVT), amplifiers are almost solely designed for use in a negative feedback loop. The feedback loop mitigates the effect of PVT, however maintaining stability becomes the main design challenge. Further, multi-stage amplifiers with high open-loop gain are used for powering headphone speakers in modern portable electronics. As there are many different headphone manufacturers and compatibility specifications, headphone amplifiers are subjected to a wide variation in capacitive and resistive loads, which further complicates the stability upkeep. This thesis explores a two-stage (Common-Gate Feedback) and three-stage (Impedance Adapting Compensation) amplifier topology with respect to performance under wide load variations. For both compensation topologies, an analytical analysis is presented, followed by a design proposal for a headphone amplifier application. Finally, the trade-offs for maintaining stability under varying loads are discussed. / text
305

Characterization of electrowetting systems for microfluidic applications

Mishra, Pradeep K 01 June 2009 (has links)
Electrowetting is the change in apparent surface energy in the presence of an electric field. Recently, this phenomenon has been used to control the shape and location of individual droplets on a surface. However, many microfluidics researchers have acknowledged unexplained behaviors and performance degradation. In this work, electrowetting systems are characterized with different methods. The electrowetting response is measured by measuring contact angle for different applied voltages. A novel technique for direct measurement of Electrowetting Force (EWF) using nano indenter is proposed in this work. The EWF measurements show that, for aqueous solution the EWF is more as compared to DI water. Additionally, the electrowetting system is found to be more susceptible for degradation when aqueous solution is used. The performance degradation due to defective dielectric layer is also investigated by measuring the electrowetting force. Degradation of EWOD systems with environmental exposure over time is further studied experimentally by contact angle and electrochemical impedance spectroscopy (EIS) measurements. The time constant of 'contact angle decay' with environmental exposure is found to be similar to the time constant of electrolyte diffusion in dielectric layer.
306

Admittance measurement for early detection of congestive heart failure

Porterfield, John Edward 02 August 2011 (has links)
Impedance has been used as a tool for cardiac research since the early 1940’s. Recently there have been many advances in this field in the diagnosis of human heart failure through the measurement of pacemaker and ICD coupled impedance detection to determine the state of pulmonary edema in patients through drops in lung impedance. These new detection methods are far downstream of the initial changes in physiology, which signify heart failure risk, namely, an increased left ventricular (LV) end-diastolic volume (also known as preload). This dissertation presents the first formal validation of the complex admittance technique for more accurate blood volume measurement in vivo in mice. It aims to determine a new configuration of admittance measurement in a large scale animal model (pigs). It also aims to prove that “piggybacking” an admittance measurement system onto previously implanted AICD and bi-ventricular pacemakers is a feasible and practical measurement that will serve as an early warning system for impending heart failure through the measurement of LV preload, which appears before the currently measured drop in lung impedance using previous techniques. / text
307

Tympanometric norms in Chinese children aged 6 to 7 years and tympanometric patterns in Chinese neonates prior to hospitaldischarge

Au, Wai-yin, Joyce., 區慧賢. January 2002 (has links)
published_or_final_version / abstract / toc / Speech and Hearing Sciences / Master / Master of Science in Audiology
308

Real time voltage stability monitoring by Thevenin impedance estimation with local measurement

Foo, Ki Fung Kelvin 05 1900 (has links)
As modern power systems operate closer to the limits due to load growth and financial imperatives, voltage stability becomes a more important issue and there have been more incidents caused by voltage collapse. For example, there have been 11 outages affecting more than 4000MW between 1984 and 2000 in North America [1]. In power systems, load voltages decrease as the supplied loads increase until the maximum power transfer point is reached. The voltage will collapse if the load is increased above this limit. Therefore, it is important to monitor the loadability of a system to avoid voltage collapse. The loadability of a system can be calculated when the Thevenin impedance is available as the maximum power transfer occurs when the Thevenin impedance and the load impedance are the same in magnitude. This thesis suggests a method to estimate the Thevenin impedance of a system. ABB corporation suggests the Voltage Stability Predictor (VIP) method to estimate the Thevenin impedance, but there are problems with this method and it is not gaining popularity in industry. In this thesis, a method is suggested to estimate the Thevenin impedance by taking advantage of the existance of negative sequence components in the system. The concept of this method has been proved mathematically. Simulations were performed on simple systems and on the modified IEEE 13 bus power flow test case to verify the feasibility of the method and the results are promising. Then, the method was verified with field measurements for a 25kV substation. The voltages and currents were analyzed to estimate the Thevenin equivalent impedance of the power system and the results were compared with the design Thevenin equivalent impedance. The result confirms the viability of the method as the estimated Thevenin impedance matched the design value.
309

Impedance model of a solid oxide fuel cell for degradation diagnosis

Gazzarri, Javier Ignacio 05 1900 (has links)
A numerical model of the steady state and alternating current behaviour of a solid-oxide fuel cell is presented to explore the possibilities to diagnose and identify degradation mechanisms in a minimally invasive way using impedance spectroscopy. This is the first report of an SOFC impedance model to incorporate degradation, as well as the first one to include the ribbed interconnect geometry, using a 2-D approximation. Simulated degradation modes include: electrode/electrolyte delamination, interconnect oxidation, interconnect/electrode interface detachment, and anode sulfur poisoning. Detailed electrode-level simulation replaces the traditional equivalent circuit approach, allowing the simulation of degradation mechanisms that alter the shape of the current path. The SOFC impedance results from calculating the cell response to a small oscillatory perturbation in potential. Starting from the general equations for mass and charge transport, and assuming isothermal and isobaric conditions, the system variables are decomposed into a steady-state component and a small perturbation around the operating point. On account of the small size of the imposed perturbation, the time dependence is eliminated, and the original equations are converted to a new linear, time independent, complex-valued system, which is very convenient from a numerical viewpoint. Geometrical and physical modifications of the model simulate the aforementioned degradation modes, causing variations in the impedance. The possibility to detect unique impedance signatures is discussed, along with a study of the impact of input parameter inaccuracies and parameter interaction on the presented results. Finally, a study of pairs of concurrent degradation modes reveals the method’s strengths and limitations in terms of its diagnosis capabilities.
310

Incorporating Time Domain Representation of Impedance Functions into Nonlinear Hybrid Modelling

Duarte Laudon, Alexander 22 November 2013 (has links)
A number of methods have been proposed that utilize the time domain transformations of the frequency dependent impedance functions to perform time-history analysis of structures accounting for soil-structure interaction (SSI). Though these methods have been available in literature for a number of years, this study is the first to rigorously examine the limitations and advantages of these methods in comparison to one another. These methods contain certain stability issues that required investigating which lead to the formation of an analysis procedure that assesses a transform method’s stability. The general applicability of these methods was demonstrated by utilizing them to model increasingly sophisticated reference problems. Additionally the suitability of these methods to being incorporated into hybrid simulations of nonlinear inelastic structures considering soil-structure interaction was confirmed. The modelling of a nonlinear structure considering soil-structure interaction is an improvement over the most common modelling strategies that model solely linear-elastic behaviour.

Page generated in 0.047 seconds