• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibration and Results of the Equis II Plasma Impedance Probe

Humphries, Seth D. 01 May 2005 (has links)
This thesis presents the calibration process and analysis results for the two Plasma Impedance Probe (PIP) units that were flown as part of the NASA Equis-I I campaign from the Kwa jalein Atoll. The work of calibration that was presented by Krishna Kurra for the PIP on the Floating Potential Measurement Unit (FPMU) is improved and extended herein. The sweeping impedance probe (SIP), the instrument formerly known as plasma sweeping probe (PSP), is an integral part of the PIP. For the SIP, the calibration presented in this work, calibration error less than 5% error is achieved. The calibration is applied to the flight data to yield impedance measurements. Balmain’s normalized theoretical model is fit to normalized calibrated data to obtain electron density profiles within the range of about 2 × 103 to 5 × 106 [Ne /cm3 ]. Electron density profiles from the plasma frequency probe (PFP), also part of the PIP, are compared with the density profiles from the SIP and there is a close correlation, verifying the calibration and analysis of the SIP.
2

Sequential Quadrature Measurements for Plasma Diagnostics

Martin-Hidalgo, Julio 01 May 2014 (has links)
The ionosphere is the atmosphere layer characterized by its high concentration of ionized plasma. It has a great impact on radio communications with satellites, causing disturbances and disruptions. Therefore, it is important to understand and predict the ionosphere characteristics. The Sweeping Impedance Probe (SIP) is an instrument for characterizing the ionosphere used for many decades with great success. In this thesis, a new SIP architecture design is presented using the latest techniques and components available. The design is detailed and analyses have been performed to ensure the required performances. The new SIP will be flown in the Auroral Spatial Structures Probe (ASSP) sounding rocket mission in early 2015, and it is expected it will make the most accurate measurements to date. Lastly, the conclusions of this project are presented and future work is outlined for what will become the next generation of SIP instruments.
3

A Pipeline Analog-To-Digital Converter for a Plasma Impedance Probe

El Hamoui, Mohamad A. 01 May 2009 (has links)
Space instrumentation technology is an essential tool for rocket and satellite research, and is expected to become popular in commercial and military operations in fields such as radar, imaging, and communications. These instruments are traditionally implemented on printed circuit boards using discrete general-purpose Analog-to-Digital Converter (ADC) devices and other components. A large circuit board is not convenient for use in micro-satellite deployments, where the total payload volume is limited to roughly one cubic foot. Because micro-satellites represent a fast growing trend in satellite research and development, there is motivation to explore miniaturized custom application-specific integrated circuit (ASIC) designs to reduce the volume and power consumption occupied by instrument electronics. In this thesis, a model of a new Plasma Impedance Probe (PIP) architecture, which utilizes a custom-built ADC along with other analog and digital components, is proposed. The model can be fully integrated to produce a low-power, miniaturized impedance probe.
4

Desenvolvimento de um sistema de bioimpedância elétrica baseado em FPGA / Development of bioimpedance system based on FPGA

Veiga, Emiliano Amarante 02 August 2013 (has links)
Made available in DSpace on 2016-12-12T20:27:37Z (GMT). No. of bitstreams: 1 Resumo - Emiliano.pdf: 94943 bytes, checksum: 29697d95e7130478be8d1ad382dffdeb (MD5) Previous issue date: 2013-08-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Electrical Impedance Spectroscopy (EIS), also called Bioelectrical Impedance Analysis (BIA), is a non-invasive technique used for characterizing the electrical properties of biological materials, but also used for obtaining body composition properties and for analyzing food quality. Most EIS devices contain microcontrollers, digital signal generators and data acquisition boards. Digital Signal Processors (DSP) have also been used to implement EIS systems, but they su_er for multifrequency signal generation. Furthermore, DSPs do not have enough space for data storage. On the other hand, EIS systems based on Field-Programmable Gate Array (FPGA) devices are indicated when signal generation and acquisition demand integration and a very small noise level. In addition, FPGA can be used for getting real time signal processing, as it is a hardware rather than sequential execution of instructions. The bioimpedance measurements consist of injecting a sinewave into the material under study by two electrodes and measuring the resulting voltage by other pair of electrodes, which are placed in an impedance probe. Most EIS systems measure the injecting current by a shunt resistor, and then the real and imaginary part of the impedance of the load under study are calculated for each discrete frequency of the system. In this work, an EIS system is proposed based on FPGA for generating sinusoidal signals in the frequency range 0.1 to 500 kHz. It contains two acquisition channels and an interface for measuring both the modulus and phase of the impedance. A proposed EIS system is fully described. The system performance of the FPGA and the acquisition interface were comprehensively investigated. Experiments using saline solutions were used in order to calibrate the impedance probe used in this work. Measurements in raw bovine milk were made in order to validate the proposed EIS system. The results showed an error of 2% when measuring milk samples in the conductivity range of 1.46 to 2.9 mS/cm. Further measurements were made in order to investigate the e_ects in the impedance spectra due to Somatic Cell Count (SCC) and hydrogen peroxide in the bovine milk. The results showed that the impedance phase spectra are sensitive to SCC at low frequencies. It has also been shown that the impedance phase of the milk adulterated with hydrogen peroxide is almost linear in the frequency range from 1 up to 10 kHz. It was showed that real time measurements and signal processing based on FPGA can be used for developing an EIS system. The proposed system is modular and it can be portable. This might be the case of using this system for measuring and characterizing bovine milk by hand-held or in-milkline instrumentation. / Espectroscopia de Impedância Elétrica (EIE), também conhecida como Análise por Bioimpedância Elétrica, é uma técnica não-invasiva utilizada para determinação das propriedades elétricas de materiais biológicos e também empregada para obtenção da composição corporal e estudo da qualidade de alimentos. Diversos sistemas de EIE são projetados com microcontroladores, sintetizadores de sinais digitais e placas de aquisição. Processadores Digitais de Sinais (DSP) também são utilizados para projetos de sistemas de EIE, porém, eles sofrem falta de recursos para trabalhar com geração e condicionamento de sinais multifrequenciais. Além do mais, não têm espaço de memória su_ciente para o armazenamento de dados. Por outro lado, os sistemas baseados em FPGA são indicados para aplicações que envolvem geração e aquisição de sinais multifrequenciais que exigem forte integração e redução de ruídos na eletrônica. Diferente da execução sequencial de instruções, o FPGA trabalha em tempo real, já que se trata de processamento em hardware. A medição de bioimpedância consiste em injetar uma onda senoidal no material em estudo por meio de dois eletrodos e medir a tensão resultante através de outro par de eletrodos, onde estão fixados em uma sonda de impedância. A maioria dos sistemas de EIE efetuam a medição da corrente usando uma carga de teste e em seguida executam o cálculo da parte real e imaginária da impedância para cada frequência. Neste trabalho, é proposto um sistema de EIE baseado em FPGA para gerar sinais senoidais na faixa de frequência de 0,1 a 500 kHz. É composto de dois canais de aquisição e uma interface para medição de módulo e fase da impedância. Sua arquitetura detalhada está descrita nas seções seguintes, onde o desempenho da geração e aquisição de sinais foram precisamente estudados. Experimentos com soluções salinas foram realizados para calibrar o sistema, e medições com leite bovino foram efetuadas para validação do sistema proposto. Os resultados indicam um erro de 2% na medição de amostras com condutividade entre 1,46 e 2,9 mS/cm. Outras medições foram realizadas para investigar os efeitos no espectro de impedância devido a Contagem de Células Somáticas (CCS) e peróxido de hidrogênio no leite bovino e os estudos mostraram que o espectro de fase é sensível a CCS em baixas freqüências. Também foi possível veri_car que o leite adulterado com peróxido de hidrogênio apresenta fase aproximada a linear na faixa de 1 a 10 kHz. Este trabalho mostrou que a medição em tempo real com arquitetura baseada em FPGA pode ser utilizada para projetar sistemas de EIE. O sistema proposto é modular e pode ser portável, permitindo sua utilização para medição e caracterização do leite bovino inloco manualmente ou por instrumentação usando recipiente com amostra de leite.
5

Architecture, Modeling, and Analysis of a Plasma Impedance Probe

Jayaram, Magathi 01 December 2010 (has links)
Variations in ionospheric plasma density can cause large amplitude and phase changes in the radio waves passing through this region. Ionospheric weather can have detrimental effects on several communication systems, including radars, navigation systems such as the Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating models of the ionospheric density is of paramount interest to scientists working in the field of satellite communication. Numerous empirical and theoretical models have been developed to study the upper atmosphere climatology and weather. Multiple measurements of plasma density over a region are of marked importance while creating these models. The lack of spatially distributed observations in the upper atmosphere is currently a major limitation in space weather research. A constellation of CubeSat platforms would be ideal to take such distributed measurements. The use of miniaturized instruments that can be accommodated on small satellites, such as CubeSats, would be key to acheiving these science goals for space weather. The accepted instrumentation techniques for measuring the electron density are the Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are able to provide higher resolution measurements of relative electron density, the Plasma Impedance Probes provide absolute electron density measurements irrespective of spacecraft charging. The central goal of this dissertation is to develop an integrated architecture for the PIP that will enable space weather research from CubeSat platforms. The proposed PIP chip integrates all of the major analog and mixed-signal components needed to perform swept-frequency impedance measurements. The design's primary innovation is the integration of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip Field-Programmable Gate Array (FPGA) to compute the probes impedance. This provides a robust solution for determining the plasma impedance accurately. The major analog errors and parametric variations affecting the PIP instrument and its effect on the accuracy and precision of the impedance measurement are also studied. The system clock is optimized in order to have a high performance ADC. In this research, an alternative clock generation scheme using C-elements is described to reduce the timing jitter and reference spurs in phase locked loops. While the jitter performance and reference spur reduction is comparable with prior state-of-the-art work, the proposed Phase Locked Loop (PLL) consumes less power with smaller area than previous designs.

Page generated in 0.0702 seconds