• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Fault location methods on transmission lines

Ghimire, Sushma 16 May 2014 (has links)
Analysis of different types of fault is an important and complex task in a power system. Accurate fault analysis requires models that determine fault distances in a transmission line. The mathematical models accurately capture behavior of different types of faults and location in a timely manner, and prevents damaging power system from fault energy. The purpose of this thesis is to use two methods for determining fault locations and their distance to the reference end buses connected by the faulted transmission line. The two methods used in this investigation are referred to as impedance-based and traveling wave methods. To analyze both methods, various types of faults were modeled and simulated at various locations on a two-bus transmission system using EMTP program. Application and usefulness of each method is identified and presented in the thesis. It is found that Impedance-based methods are easier and more widely used than traveling-wave methods.
2

Impedance-Based Stability Analysis in Power Systems with Multiple STATCOMs in Proximity

Li, Chi 19 September 2018 (has links)
Multiple STATCOM units in proximity have been adopted in power transmission systems in order to obtain better voltage regulation and share burdens. Throughout stability assessment in this dissertation, it is shown, for the first time, that STATCOMs could interact with each other in a negative way in the small-signal sense due to their control, causing voltage instability, while loads and transmission lines showed small effects. Since this voltage stability problem is induced by STATCOMs, d-q frame impedance-based stability analysis was used, for the first time, to explore the inherent power system instability problem with presence of STATCOMs as it provides an accurate understanding of the root cause of instability within the STATCOM control system. This dissertation first proposes the impedance model in d-q frame for STATCOMs, including dynamics from synchronization, current and voltage loops and reveals the significant features compared to other types of grid-tied converters that 1) impedance matrix strongly coupled in d and q channel due to nearly zero power factor, 2) different behaviors of impedances at low frequency due to inversed direction of reactive power and 3) coupled small-signal propagation paths on the voltage at point of common coupling from synchronization and ac voltage regulation. Using the proposed impedance model, this dissertation identifies the frequency range of interactions in a viewpoint of d-q frame impedances and pinpointed that the ac voltage regulation was the main reason of instability, masking the effects of PLL in power transmission systems. Due to the high impedance of STATCOMs compared to that of transmission lines around the frequency range of interactions, STATCOMs were seen to interact with each other through the transmission lines. A scaled-down 2-STATCOM power grid was built to verify the conclusions experimentally. / Ph. D. / STATCOMs have been proven a type of effective power electronics device for reactive power compensations and people are trying to install multiple STATCOMs in proximity in power systems in order to have better performances. This dissertation, for the first time, evaluates the operation of multiple STATCOMs in proximity and finds out that they could interact with each other in a negative way in the small-signal sense due to their control, causing voltage instability, while loads and transmission lines showed small effects. Since this voltage stability problem is induced by STATCOMs, d-q frame impedance-based stability analysis was used, for the first time, to explore the inherent power system instability problem with presence of STATCOMs as it provides an accurate understanding of the root cause of instability within the STATCOM control system. To this end, an impedance model of STATCOMs is proposed, which accurately explains the terminal behaviors of STATCOMs. Using the model, this dissertation identifies the frequency range of interactions in a viewpoint of d-q frame impedances and pinpointed that the ac voltage regulation was the main reason of instability, masking the effects of PLL in power transmission systems. All the above is validated experimentally in a scaled-down 2-STATCOM power system.
3

Localização de faltas para sistemas de distribuição ativos : metodologia analítica adaptativa baseada na estimativa da impedância aparente

Orozco-Henao, Cesar Augusto January 2016 (has links)
Este documento apresenta uma metodologia analítica adaptativa para localização de faltas baseada na estimativa da impedância para sistemas de distribuição ativos. A metodologia proposta combina a informação fornecida por dispositivos eletrônicos inteligentes alocados na subestação principal e nos terminais de cada unidade de Recurso Energético Distribuído (do inglês Distributed Energy Resources - DER), o conhecimento da topologia da rede e os seus parâmetros para estimar a localização da falta. A característica adaptativa é dada pelo uso de modelos elétricos lineares para considerar o efeito das DER conectadas à rede, quando a informação fornecida pelos Dispositivos Eletrônicos Inteligentes (do inglês Intelligent Electronic Devices - IED) não é disponível. Adicionalmente, uma estratégia baseada na técnica Ladder é desenvolvida para estimar a contribuição de corrente desde as DER até o ponto de falta. Esta estratégia permite considerar vários geradores conectados e seus diferentes modos de operação. A metodologia proposta foi validada com o sistema IEEE 34 barras. Este sistema foi modelado no Alternative Transients Program (ATP) e modificado pela inserção de várias unidades DER. A metodologia proposta foi validada em vários cenários. Estes cenários avaliam o efeito da distância até a falta, resistência da falta, incerteza na carga, nível de penetração de DER, número de geradores conectados e erros nas medidas ou na estimação dos parâmetros das DER quando seus modelos forem utilizados. Para estas considerações, o desempenho da formulação proposta é satisfatório, apresentando erros menores do que 3%. / This document presents an adaptive analytical impedance-based fault location methodology for active distribution systems. The proposal combines information provided by Intelligent Electronic Devices (IEDs) located in the substation, each Distributed Energy Resources units terminal, the knowledge of the network topology as well as its parameters to estimate the fault location. Its adaptive feature is given by the use of linear analytical equivalent models to consider of DER effect in case the information provided by a local IED is not available. Additionally, a ladder-based technique is proposed to estimate the current contribution from of DER to the fault point. This process allows considering several DER connected and their different operation modes. The proposed methodology is validated on the IEEE 34-node test feeder. This system is modeled on ATP/EMTP and modified with the insertion of several DER units. The methodology is validated by considering several scenarios. These scenarios evaluate the effect of fault distance, fault resistance, load variation, DER penetration level, numbers of DERs connected and errors in the DER parameters. For these considerations, the proposed methodology performance is satisfactory, presenting fault location errors below 3%.
4

Localização de faltas para sistemas de distribuição ativos : metodologia analítica adaptativa baseada na estimativa da impedância aparente

Orozco-Henao, Cesar Augusto January 2016 (has links)
Este documento apresenta uma metodologia analítica adaptativa para localização de faltas baseada na estimativa da impedância para sistemas de distribuição ativos. A metodologia proposta combina a informação fornecida por dispositivos eletrônicos inteligentes alocados na subestação principal e nos terminais de cada unidade de Recurso Energético Distribuído (do inglês Distributed Energy Resources - DER), o conhecimento da topologia da rede e os seus parâmetros para estimar a localização da falta. A característica adaptativa é dada pelo uso de modelos elétricos lineares para considerar o efeito das DER conectadas à rede, quando a informação fornecida pelos Dispositivos Eletrônicos Inteligentes (do inglês Intelligent Electronic Devices - IED) não é disponível. Adicionalmente, uma estratégia baseada na técnica Ladder é desenvolvida para estimar a contribuição de corrente desde as DER até o ponto de falta. Esta estratégia permite considerar vários geradores conectados e seus diferentes modos de operação. A metodologia proposta foi validada com o sistema IEEE 34 barras. Este sistema foi modelado no Alternative Transients Program (ATP) e modificado pela inserção de várias unidades DER. A metodologia proposta foi validada em vários cenários. Estes cenários avaliam o efeito da distância até a falta, resistência da falta, incerteza na carga, nível de penetração de DER, número de geradores conectados e erros nas medidas ou na estimação dos parâmetros das DER quando seus modelos forem utilizados. Para estas considerações, o desempenho da formulação proposta é satisfatório, apresentando erros menores do que 3%. / This document presents an adaptive analytical impedance-based fault location methodology for active distribution systems. The proposal combines information provided by Intelligent Electronic Devices (IEDs) located in the substation, each Distributed Energy Resources units terminal, the knowledge of the network topology as well as its parameters to estimate the fault location. Its adaptive feature is given by the use of linear analytical equivalent models to consider of DER effect in case the information provided by a local IED is not available. Additionally, a ladder-based technique is proposed to estimate the current contribution from of DER to the fault point. This process allows considering several DER connected and their different operation modes. The proposed methodology is validated on the IEEE 34-node test feeder. This system is modeled on ATP/EMTP and modified with the insertion of several DER units. The methodology is validated by considering several scenarios. These scenarios evaluate the effect of fault distance, fault resistance, load variation, DER penetration level, numbers of DERs connected and errors in the DER parameters. For these considerations, the proposed methodology performance is satisfactory, presenting fault location errors below 3%.
5

Localização de faltas para sistemas de distribuição ativos : metodologia analítica adaptativa baseada na estimativa da impedância aparente

Orozco-Henao, Cesar Augusto January 2016 (has links)
Este documento apresenta uma metodologia analítica adaptativa para localização de faltas baseada na estimativa da impedância para sistemas de distribuição ativos. A metodologia proposta combina a informação fornecida por dispositivos eletrônicos inteligentes alocados na subestação principal e nos terminais de cada unidade de Recurso Energético Distribuído (do inglês Distributed Energy Resources - DER), o conhecimento da topologia da rede e os seus parâmetros para estimar a localização da falta. A característica adaptativa é dada pelo uso de modelos elétricos lineares para considerar o efeito das DER conectadas à rede, quando a informação fornecida pelos Dispositivos Eletrônicos Inteligentes (do inglês Intelligent Electronic Devices - IED) não é disponível. Adicionalmente, uma estratégia baseada na técnica Ladder é desenvolvida para estimar a contribuição de corrente desde as DER até o ponto de falta. Esta estratégia permite considerar vários geradores conectados e seus diferentes modos de operação. A metodologia proposta foi validada com o sistema IEEE 34 barras. Este sistema foi modelado no Alternative Transients Program (ATP) e modificado pela inserção de várias unidades DER. A metodologia proposta foi validada em vários cenários. Estes cenários avaliam o efeito da distância até a falta, resistência da falta, incerteza na carga, nível de penetração de DER, número de geradores conectados e erros nas medidas ou na estimação dos parâmetros das DER quando seus modelos forem utilizados. Para estas considerações, o desempenho da formulação proposta é satisfatório, apresentando erros menores do que 3%. / This document presents an adaptive analytical impedance-based fault location methodology for active distribution systems. The proposal combines information provided by Intelligent Electronic Devices (IEDs) located in the substation, each Distributed Energy Resources units terminal, the knowledge of the network topology as well as its parameters to estimate the fault location. Its adaptive feature is given by the use of linear analytical equivalent models to consider of DER effect in case the information provided by a local IED is not available. Additionally, a ladder-based technique is proposed to estimate the current contribution from of DER to the fault point. This process allows considering several DER connected and their different operation modes. The proposed methodology is validated on the IEEE 34-node test feeder. This system is modeled on ATP/EMTP and modified with the insertion of several DER units. The methodology is validated by considering several scenarios. These scenarios evaluate the effect of fault distance, fault resistance, load variation, DER penetration level, numbers of DERs connected and errors in the DER parameters. For these considerations, the proposed methodology performance is satisfactory, presenting fault location errors below 3%.
6

D-Q Frame Impedance Based Small-signal Stability Analysis of PV Inverters in Distribution Grids

Tang, Ye 18 January 2021 (has links)
With development of renewable energies worldwide, power system is seeing higher penetration of Utility-scale photovoltaic (PV) farms at distributed level as well as transmission level. Power electronics converters present negative incremental impedance characteristics at their input while under regulated output control, which brings in the possibility of system instability. Recent evidence suggests that large-scale penetration of PV inverters increases the probability of instability. While IEEE standard 1547 newest version requires PV inverters to have reactive power control, there have been few investigations into the small-signal stability impact of PV inverters on distribution systems especially with reactive power control. In addition, the existing studies either use the conventional way of state space equations and eigenvalues or use time-domain simulation methodology, which are based on the assumptions that detailed models of the grid and the PV inverters are accessible. Different from the previous literatures, this research employs Generalized Nyquist Criterion (GNC) method based on measured impedances in d-q frames at connection interfaces. GNC method has the advantage that interconnection stability can be judged without knowing the grid and PV generator model details. This work first demonstrates the advantage of volt-var droop mode control among all different local reactive power control modes for PV inverters in the aspects of static impact on grid voltage profiles and power loss in a 12kV test-bed distribution system. Then it is discovered that d-q frame impedance of PV inverter under volt-var droop mode control shows a significant difference from other reactive power control modes. The d-q frame impedance derived from the small-signal model of PV generator is validated by both MATLAB simulation results and hardware experiments. Based on the d-q frame impedances, GNC is utilized to analyze the stability connection of a single PV farm and multiple PVs into the grid. GNC stability assessment results match with time-domain simulations and reveal the stability problem related to volt-var droop mode control. Furthermore, considering the unbalance of the distribution system, a new impedance model in d-q frame is proposed to capture both the dynamics of PV inverter operating in unbalanced points and the dynamics of three-phase unbalanced grid. The new impedance model is a combination of positive-negative sequence impedance and conventional d-q frame impedance. A procedure is designed for the measurement of the extended d-q frame impedance and the GNC application to predict small-signal stability of the unbalanced grid, which are justified by both time domain simulation and hardware experiments. / Doctor of Philosophy / To overcome the limited fossil fuel reserve on the earth and global warming, renewable energies become more and more popular worldwide. Centralized thermal power generators in the transmission system are gradually being replaced by distributed energy resources (DER) which are connection to the distribution system, bringing more challenges to the safe and stable operation of the power system. This work focuses on the small-signal stability impact of photovoltaic (PV) generators in the distribution system, which basically analyzes into whether the connection of PV generator to the distribution system will end up in an expected steady operation state with high resistance to any relatively small disturbances. The stability assessment tool is based on impedance measurement which treats both sides as black boxes and bridges the information gap between Utility operators and PV generator vendors. A major finding of this work is that while PV generators in the distribution system help to provide grid-support functions of voltage regulation, they may cause voltage small-signal stability problems due to the high grid impedance, which is worse if more PV inverters are put in parallel. Even PV farms connected to different branches of the complicated radial distribution system may have interactions with each other. So the design of control strategy and parameters of PV generator should consider the impact of other PV generators. GNC method based on impedances measurement is feasible and accurate for stability assessment of a distribution system with multiple PV farms. The impedance based method is upgraded and extended to be applied for the connection of power electronics devices to the three-phase unbalanced distribution systems.
7

Development of Structural Health Monitoring Systems Incorporating Acoustic Emission Detection for Spacecraft and Wind Turbine Blades

Yun, Jinsik 01 June 2011 (has links)
Structural Health Monitoring (SHM) is the science and technology of monitoring and can assess the condition of aerospace, civil, and mechanical infrastructures using a sensing system integrated into the structure. SHM is capable of detecting, locating, and quantifying various types of damage such as cracks, holes, corrosion, delamination, and loose joints, and can be applied to various kinds of infrastructures such as buildings, railroads, windmills, bridges, and aircraft. A major technical challenge for existing SHM systems is high power consumption, which severely limits the range of its applications. In this thesis, we investigated adoption of acoustic emission detection to reduce power dissipation of SHM systems employing the impedance and the Lamb wave methods. An acoustic emission sensor of the proposed system continuously monitors acoustic events, while the SHM system is in sleep mode. The SHM system is evoked to perform the SHM operation only when there is an acoustic event detected by the acoustic emission sensor. The proposed system avoids unnecessary operation of SHM operations, which saves power, and the system is effective for certain applications such as spacecraft and wind turbine blades. We developed prototype systems using a Texas Instruments TMS320F2812 DSP evaluation board for the Lamb wave method and an MSP430 evaluation board for the impedance method. / Master of Science
8

Towards a Self-Powered Structural Health Monitoring Smart Tire

Chung, Howard Jenn Yee 20 June 2016 (has links)
This work investigates the feasibility of developing a self-powered structural health monitoring (SHM) smart tire using piezoelectric materials. While this work is divided into two components: SHM and energy harvesting, the context of smart tire in this work is defined as the development of a SHM system that (i) has self-powering capabilities, and (ii) addresses the potential of embedding sensors. The use of impedance based SHM on a tire is severely limited due to the low stiffness and high damping characteristics of the tire. This work propose the use of a high voltage impedance analyzer, and the addition of electrical circuit to enhance the damage detection process. Experimental work was conducted on an aluminum beam and on a tire section with commercially available piezoelectric sensors. The use of a high voltage impedance analyzer was demonstrated to provide insight on damage type and damage location. Two sensors were connected in parallel as an effective sensory system, and was shown to reduce interrogation time, but reduce damage identification sensitivity. With added electrical circuits, a belt separation on the tire was successfully detected by the shift in electrical impedance signature. For the energy harvesting portion of this work, a bimorph piezoelectric energy harvester model was derived using extended Hamilton's principle and the linear constitutive relations of piezoelectric materials. Comparison of model with experimental data at increasing loading conditions demonstrated the monotonic increase in voltage output, with linear asymptotes at extreme loading conditions (short-circuit and open-circuit). It also demonstrated the existence of an optimal resistive load for maximum power output. To address the ability to embed sensors, an existing fabrication process to grow arrays of ZnO nanowires in carbon fiber reinforced polymer was used in this work. Comparison of power generation from a composite beam with ZnO nanowires with a composite beam without ZnO nanowires demonstrated the power generation capabilities of the nanowires. A maximum peak voltage of 8.91 mV and peak power of 33.3 pW was obtained. After the application of 10V DC, a maximum of 45 pW was obtained. However, subsequent application of 20V DC reduced the maximum peak power output to 2.5 pW. Several attempts to increase power generation including adding a tip mass and changing the geometry of the composite beam were conducted. Finally, the theoretical voltage frequency response function obtained from the theoretical piezoelectric constant and dielectric constant of a single ZnO nanowire were compared to the experimental voltage frequency response function. The discrepancies were discussed. / Master of Science
9

Ultra Low-Power Wireless Sensor Node for Structural Health Monitoring

Zhou, Dao 12 February 2010 (has links)
Structural Health Monitoring (SHM) is the technology of monitoring and assessing the condition of aerospace, civil, and mechanical infrastructures using a sensing system integrated into the structure. Among variety of SHM approaches, impedance-based method is efficient for local damage detection. This thesis focuses on system level concerns for impedance-based SHM. Two essential requirements are reached in the thesis: reduction of power consumption of wireless SHM sensor, and compensation of temperature dependency on impedance. The proposed design minimizes power by employing on-board signal processing, and by eliminating power hungry components such as ADC and DAC. The prototype implemented with MSP430 micro controller is verified to be able to handle SHM operation and wireless communication with extremely low-power: 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it can run for about 2.5 years with two AAA-size batteries. To compensate for temperature change, we proposed an algorithm to select a small subset of baseline profiles for some critical temperatures and to estimate the baseline profile for a given ambient temperature through interpolation. Experimental results show that our method reduces the number of baseline profiles to be stored by 45%, and estimates the baseline profile of a given temperature accurately. / Master of Science
10

DQ-Frame Small-Signal Stability Analysis of AC Systems with Single-Phase and Three-Phase Converters

Lin, Qing 21 June 2024 (has links)
The widespread integration of power converters in applications such as microgrids and data centers has introduced significant stability challenges. This dissertation presents a novel approach to modeling and comprehensive stability analysis for both single-phase and three-phase converters, addressing vital gaps in the existing literature. The first part of the dissertation (Chapters 2 to 4) focuses on single-phase power supply units, proposing an impedance model and a loop gain model based on dq-frame analysis. These models have been validated through extensive experimental testing, demonstrating their effectiveness in stability analysis across a range of system configurations, including single-phase, three-phase three-wire, and three-phase four-wire systems. The second part (Chapters 5 and 6) examines three-phase converters used for integrating renewable energy into microgrids. It introduces a grid-forming control, followed by a detailed investigation into its impedance modeling and stability assessment. This part specifically tackles the challenges posed by the appearance of right-half-plane poles in stability analysis, proposing a new stability margin index to address these issues. The efficacy of these research findings is further substantiated by the development and implementation of a Power-Hardware-in-the-Loop testbed, providing practical validation. Overall, this dissertation has enhanced the modeling, understanding, and management of stability issues in power electronics systems, offering valuable insights and methodologies that are likely to influence future research and development in the field. / Doctor of Philosophy / Power electronics play a crucial role in many of today's advanced technologies, including Renewable Energy (like wind and solar power), Electric Vehicles, Cloud Computing, and Artificial Intelligence. In renewable energy, power electronics are key for converting energy sources for efficient grid integration. Electric vehicles rely on power converter systems for charging their batteries and driving their motors. Similarly, in Cloud Computing and Artificial Intelligence, power electronics ensure that the computers and servers in data centers have a steady and reliable power supply for operation. However, using these advanced power electronics on a large scale, like in wind farms or data centers, can lead to challenges, including many reported system instability issues. These issues highlight the importance of a thorough analysis and understanding of the behavior and interaction of power electronics systems. In addressing these challenges, power electronics converters, conceptualized as a blend of circuits and control systems, demand comprehensive modeling from the ground up. Such modeling is essential to understanding their behavior, ranging from individual components to the entire system. This is key to establishing a clear connection between intricate design details and overall system performance. With power electronics systems becoming more complex and the continual emergence of new technologies, there remains a significant array of unanswered questions, especially in the domain of stability analysis for AC power electronics systems. This dissertation delves into two prominent modeling methods for stability analysis: impedance modeling and loop gain modeling. By exploring and addressing specific gaps identified in prior research, this work aims to contribute to a more profound understanding and enhanced application of these critical methods. The research presented in this dissertation is methodically divided into two main sections. The first section, including Chapter 2 to Chapter 4 is dedicated to exploring single-phase converter power supply units (PSUs) systems. This section introduces innovative models for analyzing their stability, applicable to single-phase PSUs in various system configurations, including both single-phase and three-phase setups. This modeling approach is a significant step forward in understanding and enhancing the stability of single-phase PSU loads. The second section, including Chapter 5 and Chapter 6, delves into the analysis of three-phase converters used in integrating renewable energy sources into microgrids. A notable feature of these converters is their grid-forming control mechanism, which includes a new frequency and power droop control loop. This part also explores modeling the impact of these converters on microgrid stability. Moreover, the issue of right-half-plane (RHP) poles in impedance analysis- a complex problem that can affect stability analysis is addressed. It proposes innovative methods for measuring stability in such conditions. In conclusion, this research made advancements in the modeling for stability analysis of power converter systems. For single-phase converters, the developed impedance model and loop gain model, based on dq-frame analysis, have been proven to be accurate. These models are versatile for stability analysis in various AC systems with single-phase PSU loads. In the study of three-phase converters, the grid-forming converter was successfully designed to support the grid as a distributed energy resource interface. This design contributes positively to microgrid stability. Furthermore, to address the presence of RHP poles in stability analysis, a new stability margin index was defined to better understand and manage these challenges. These findings represent important steps forward in the field of power electronics and contribute valuable insights for future research and development.

Page generated in 0.0933 seconds