Spelling suggestions: "subject:"implicitisation"" "subject:"implicitization""
1 |
Implicitisation de surfaces algébriques rationnelles avec la méthode des syzygiesDohm, Marc 08 July 2008 (has links) (PDF)
L'implicitisation d'une surface algébrique rationnelle, c'est-à-dire le passage de la paramétrisation à une représentation implicite, est un<br />problème géométrique classique. Dans ce travail de thèse, nous utilisons la théorie des syzygies pour représenter implicitement une surface par une matrice dont les mineurs de taille maximale ont l'équation implicite comme plus grand diviseur commun. Dans les deux premiers chapitres, nous traitons deux classes de surfaces spéciales pour lesquelles il est toujours possible de construire une matrice carrée qui correspond au résultant d'une μ-base : les surfaces réglées et les surfaces canales. Dans les chapitres suivants, le cas général de surfaces rationnelles paramétrées sur une variété torique de dimension 2 est étudié. Nous montrons qu'une telle matrice peut être construite en n'utilisant que des syzygies linéaires et nous décrivons un algorithme simple et efficace pour son calcul.
|
2 |
Méthode algorithmique d'implicitisation et d'inversion - Application au lancer de rayonsBiard, Luc 26 November 1990 (has links) (PDF)
Le travail présenté ici a pour thème le développement et la mise en oeuvre d'une méthode d'implicitisation et d'inversion ainsi que son application à la visualisation de surfaces polynomiales et rationnelles parametrées par la technique du lancer de rayons. l'implicitisation est un problème d'élimination pour lequel les méthodes de résultant s'avèrent mieux adaptées à notre application. la méthode de dixon (1908) pour les surfaces obtenues par produit tensoriel (surfaces de bi-degré) est particulièrement bien adaptée. Nous proposons une extension algorithmique de cette méthode qui conserve ses propriétés de simplicité et de compacité. la programmation en langage REDUCE a permis une expérimentation sur de nombreux exemples: elle montre que l'équation implicite est obtenue, et ceci de façon efficace, bien que la justification théorique de l'algorithme reste incomplète. L'étude de cette dernière nous a amené à considérer les problèmes de paramétrisations non fidèles et de l'apparition de facteurs parasites. Ensuite le problème de l'inversion (identification et détermination des paramètres d'un point de la surface rationnelle) est résolu complètement. Nous proposons enfin une application numérique de ces algorithmes (en langage C) au problème de l'intersection d'une Bezier rationnelle et d'une demi-droite (rayon). les aspects de stabilité numérique et d'optimisation sont mis en avant: à chaque surface est associée une table pre-calculée, permettant d'obtenir simplement l'équation d'intersection dans le paramètre rayon. Les images données attestent des qualités numériques de cette méthode d'implicitisation-inversion<br />~
|
3 |
Étude du résultant sur une variété algébriqueBusé, Laurent 19 December 2001 (has links) (PDF)
Dans ce travail de thèse une étude théorique et pratique du résultant résiduel est proposée. Ce résultant résiduel fournit une condition nécessaire et suffisante pour qu'un système algébrique possède des solutions sur une variété résiduelle obtenue par éclatement. Des méthodes effectives pour calculer ce résultant résiduel ainsi que son degré sont proposées, les résultats les plus précis étant obtenus lorsque le lieu que l'on éclate est une intersection complète ou encore une intersection complète locale projective Cohen-Macaulay de codimension deux. Un algorithme pour résoudre le problème d'implicitisation dans le cas ou la paramétrisation possède des points base localement intersection complète est explicité à l'aide du résultant résiduel. On montre également comment ce résultant résiduel permet d'obtenir la forme de Chow des points isolés d'un système algébrique. Enfin le dernier chapitre de cette thèse présente une définition et une première étude du résultant déterminantal qui donne une condition nécessaire et suffisante pour qu'une matrice générique soit de rang inférieur ou égal à un entier positif donné.
|
Page generated in 0.1008 seconds