• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amplification fibrée de forte énergie pour les lasers de puissance / High-energy fibered amplification for large-scale laser facilities

Lago, Laure 17 November 2011 (has links)
Ces travaux concernent le développement d’un amplificateur à fibre optique souple, microstructurée, double-gaine, dopée ytterbium (Yb), et monomode à large coeur, dans la gamme d’impulsion nanoseconde, multi-kiloHertz et milliJoule, pour l’injection de chaînes lasers de puissance. L’architecture amplificatrice est mise en oeuvre dans une configuration MOPA (Master Oscillator Power Amplifier) à plusieurs étages. Un modèle numérique de l’amplification sur fibre double-gaine dopée Yb, incluant l’émission spontanée amplifiée, a été développé pour étudier le comportement de ce type d’amplificateur fibré et procéder au dimensionnement du dispositif expérimental. Afin de s’affranchir du processus de saturation par le gain, un algorithme de contre-réaction permettant de déterminer numériquement la forme temporelle optimale a été associé au modèle. Nous avons obtenu des résultats expérimentaux en bon accord avec les simulations numériques, et avec les performances suivantes : une énergie de 0.5 mJ par impulsion à une fréquence de répétition dans la gamme de 1 kHz à 10 kHz, sur des impulsions à spectre étroit centré à la longueur d’onde 1053 nm, à profil temporel super-gaussien d’ordre 20 de durée 10 ns, avec un rapport signal-sur-bruit optique supérieur à 50 dB et un taux de maintien de la polarisation à 20 dB. Le profil spatial en sortie de système est monomode (M²=1.1). Ce dispositif peut également délivrer des énergies jusqu’à 1.5 mJ. Nous avons ensuite mis à profit ces performances pour l’amplification d’impulsions à dérive de fréquence, et avons obtenu une énergie par impulsion de 0.7 mJ sur une durée de 570 fs, à une fréquence de répétition de 10 kHz. / This work concerns the development of a double-clad ytterbium-doped single-mode microstructured flexible fiber-based amplifier, in the nanosecond, multi-kiloHertz and milliJoule regime, for large-scale laser facilities seeding. We have used a multi-stage master oscillator power amplifier fibered architecture. A numerical model of ytterbium-doped double-clad fiber-based amplification, including amplified spontaneous emission, was developed in order to study the behaviour of such amplifier and to correctly design the experimental set-up. This model was completed by a feed-back algorithm to numerically predict the optimal temporal shape to compensate the gain saturation process. We demonstrated experimental results in good agreement with numerical simulations, with the following performances: 0.5 mJ pulse energy, at a frequency repetition from 1 kHz to 10 kHz, with a narrow bandwidth spectrum centred at 1053 nm wavelength, with 10 ns pulse duration on a perfect super-Gaussian temporal profile, an optical signal-to-noise ratio better than 50 dB and a polarization extinction ratio of 20 dB. We checked that the beam quality was diffraction limited, with an M² measurement of 1.1. Moreover, the system can deliver energies up to 1.5 mJ. Then, we took the advantage of such results to amplify chirped pulses. We demonstrated 0.7 mJ pulse energy, with 570 fs duration at 10 kHz repetition frequency.
2

Amplification et transport fibré d’impulsions énergétiques pour les pilotes des installations laser de puissance / Amplification and beam delivery of energetics pulses for large scale laser facility’s seeder

Scol, Florent 24 November 2017 (has links)
Le faible encombrement, la stabilité, et la qualité spatiale du faisceau qu’ils délivrent expliquent le succès des systèmes laser fibrés. Dans le cadre des installations laser de puissance, ceux-ci sont utilisés pour générer et amplifier les impulsions mais restent limités à des énergies de l’ordre du nanojoule pour des impulsions nanosecondes. L’objectif de cette thèse est d’atteindre la gamme du millijoule par impulsion avec un niveau de performances compatible de l’injection de telles installations. Ainsi, les problématiques d’amplification et de transport fibré ont été traitées. Dans le premier cas, un système MOPA entièrement fibré basé sur une fibre effilée a permis de délivrer des impulsions de 10 ns et 500 µJ avec des caractéristiques temporelles, spectrales et spatiales en accord avec le cahier des charges. Pour la problématique de transport, et afin de minimiser les effets non linéaires, l’utilisation de fibres à cœur creux a été privilégiée. Une telle fibre, de 21 µm de diamètre de mode, a ainsi permis de transporter des impulsions de plus de 30 kW crête en minimisant les distorsions temporelles et spectrales. Enfin, en complément de ces deux problématiques, nous avons également identifié des briques technologiques permettant d’envisager une modification en profondeur de l’architecture des sources fibrées actuelles des grandes installations laser. L’utilisation d’une diode laser à dérive de fréquence a ainsi permis d’atteindre une énergie de 1,25 mJ pour des impulsions de 10 ns. La mise en forme spatiale fibrée du faisceau a également pu être réalisée pour des impulsions de l’ordre de 100 µJ grâce à une fibre optique microstructurée spécialement réalisée. / Compactness, stability and beam quality are some benefits of fiber lasers. In large scale laser facilities, those systems are already used to generate and amplify pulses but are limited to the nanojoule range. The goal of this thesis consists in building a millijoule range system satisfying large scale laser facility requirements. Amplification and beam delivery systems have been considered. In the first case, an all-fiber MOPA has been realized. Using a 32 µm mode field diameter tapered fiber, we amplified 10 ns pulses up to 500 µJ with excellent temporal, spectral and spatial properties. In a second step, we consider the fiber beam delivery of those pulses over 15 m. In order to minimize nonlinear effects, hollow-core fibers have been used. This way, thanks to a 21 µm mode field diameter fiber, 30 kW peak power nanosecond pulses have been delivered over 15 m with negligible temporal and spectral distortions. In addition of amplification and beam delivery, we also considered technological building blocks which could be used to modified actual fiber seeder architecture. Chirped laser diode has been used to generate pulses and allowed us to finally obtained 1,25 mJ with our MOPA system. Fiber spatial beam shaping has also been performed in the 100 µJ range thanks to a microstructured, single-mode, polarization maintaining fiber which delivers a coherent top-hat beam. Finally, this work confirms the great potential of fiber systems for high energy amplification and beam delivery for the next generation of large scale laser facilities seeder.
3

Etude théorique et expérimentale de micro-OLEDs rapides sur électrodes coplanaires en régime d'impulsions à haute densité de courant / Theoretical and experimental studie of µ-OLED on coplanar waveguide electrodes in nanosecond scale pulses width under high current densities

Chime, Alex Chamberlain 20 December 2017 (has links)
Ce travail de thèse explore l’excitation électrique de micro-OLEDs en régime d’impulsion afin d’évaluer la possibilité d’atteindre le seuil laser dans les diodes laser organiques qui restent encore à démontrer. Ils’agit d’identifier des solutions scientifiques et techniques ouvrant la voie vers des densités d’excitations électriques équivalentes aux seuils laser observés en pompage optique. Dans la littérature, les seuils les plus bas sont équivalents à des densités de courant entre 0.72 et 4kA/cm² si on suppose une efficacité quantique externe de 1%. De telles densités de courant imposent un régime d’excitation électrique impulsionnel pour s’affranchir des risques de destructions par effet thermique et des pertes par annihilation singulet-triplet dès lors que l’on travaille avec des durées d’impulsion de l’ordre de la nanoseconde. Et pour espérer des réponses électriques et optiques efficaces à de telles durées d’impulsions, il est proposé ici de combiner l’électronique hyperfréquence et l’optoélectronique organique. A cet effet, un modèle électrique équivalent de l’OLED permettant d’accéder à son temps de réponse en mode tout-ou-rien est développé. De plus, des électrodes spécifiques sont dimensionnées et structurées sous forme de lignes coplanaires d’impédance caractéristique 50Ω afin de maîtriser l’impédance du circuit d’excitation et d’assurer le transfert du maximum d’énergie de l’impulsion d’excitation vers celui-ci. Après dépôts de l’hétéro-structure organique basée sur le système hôte-dopant Alq3:DCM, les composants ainsi réalisés sont caractérisés électriquement et optiquement avec différentes techniques par analyse vectorielle, en régime continu et en régime d’impulsion. En régime d’impulsion de très courtes durées (2.5~20ns) et à faible taux de répétition (100Hz), des temps de réponse de 330ps etdes densités de courant maximales entre 4 et 6kA/cm² ont été mesurés alors que le maximum de luminance culmine à 4.11x10⁶ cd/m². / This thesis explores the pulsed electrical excitation of micro-OLEDs in order to evaluate the possibility of reaching the laser threshold in organic laser diodes that have not yet be demonstrated. The main goal is the identification of the scientific and technical solutions towards high electrical excitation current densities equivalent to the laser thresholds observed under optical pumping. In the literature, the lowest reported thresholds are equivalent to current densities between 0.72 and 4kA/cm², assuming an external quantum efficiency of 1%. Such current densities imply a pulsed electrical excitation regime to prevent the risks of device breakdown by Joule heating effects and to avoid losses by excitons annihilation processes, as long as the pulses duration are in nanosecond range. To expect efficient electrical and optical responses to such pulse durations, it is suggested to combine microwave electronics and organic optoelectronics. For this purpose, an equivalent electrical model of the organic light emitting device, allowing access to its on-off mode time response, is developed. Additionally, specific electrodes are designed and patterned in the coplanar waveguide configuration with characteristic impedance of 50Ω, inorder to control the impedance of the excitation circuit and to ensure the maximum energy transfer of the excitation pulse to the device. After deposition of organic hetero-structure based on the Alq3:DCM host-guest system, the device is characterized electrically and optically with different techniques by vector network analysis, in continuous mode and in pulse mode. In pulse excitation regime with very short pulses durations (2.5~20ns) and low repetition rate (100Hz), time response of 330ps and maximum current densities between 4 and 6kA/cm² are recorded while the maximum of luminance peaks at 4.11x10⁶ cd/m².
4

Effets des champs électriques pulsés milli et nanosecondes sur cellules et tissus

Chopinet-Mayeux, Louise 24 September 2013 (has links) (PDF)
L'électroperméabilisation est une technique permettant, entre autre, l'entrée de molécules cytotoxiques dans les tumeurs. Elle consiste en la perméabilisation transitoire de la membrane plasmique suite à l'application de champs électriques pulsés. Certaines conditions électriques permettent le transfert de gène, ouvrant le champ d'application de la technique à la thérapie génique. Cette thèse s'est intéressée à étudier les effets des champs électriques sur cellules et tissus, dans le cas de l'électro-transfert de gène. En effet, la compréhension mécanistique de ce transfert est indispensable à l'optimisation de la technique pour les futures applications cliniques. Dans ce contexte, nous nous sommes attachés à étudier les 3 barrières rencontrées par le gène lors de son transfert, à savoir la complexité de l'environnement multicellulaire au niveau du tissu, la membrane plasmique et l'enveloppe nucléaire au niveau de la cellule. i) L'efficacité de l'electrotransfer de gène a été étudié sur le modèle de tumeur in vitro/ex vivo dit sphéroïde. Dans un premier temps ce modèle a été validé pour l'étude de l'électrotransfection et dans un deuxième temps les raisons de l'absence d'efficacité en structure tissulaire ont été mises en évidence et l'optimisation de la technique a été amorcée. ii) Une deuxième partie a été dédiée à l'étude nano-mécanique des cellules à l'échelle de la membrane plasmique par microscopie à force atomique. La microscopie à force atomique a été utilisée afin d'imager et mesurer par spectroscopie de force l'effet de l'électroperméabilisation sur la membrane plasmique. Nous avons imagé la perturbation membranaire et mesuré une diminution d'élasticité membranaire suivant l'application des champs électriques. Ce phénomène a été relié aux effets secondaires de l'électroperméabilisation affectant l'actine corticale. iii) Une dernière partie s'est intéressée aux effets des nanopulses. Ces impulsions très courtes (ns) et intenses (plusieurs kV/cm) représentent la nouvelle génération d'impulsions, dont les effets sont encore peu décrits, mais pourraient permettre une déstabilisation spécifique de l'enveloppe des organelles. L'impact de ses impulsions nanosecondes sur la membrane ont été analysée par Patch-Clamp pour déterminer l'implication du cytosquelette d'actine dans la forme des nanopores créés. Dans un deuxième temps leur impact sur l'enveloppe nucléaire a été étudié, dans le but de déterminer d'éventuels effets néfastes sur le fonctionnement cellulaire, et la potentielle augmentation de transfection résultant d'une déstabilisation de la deuxième barrière rencontré par le gène lors de son transfert. Il est montré que l'actine ne joue pas de rôle dans la formation des nanopores, et que les impulsions nanosecondes ne permettent pas d'augmenter l'efficacité de transfection. En conclusion ces travaux ont apporté de nouveaux éléments dans la compréhension du mécanisme d'électroporation et des barrières au transfert de gène. Des protocoles, modèles, et outils ont été mis en place et sont aujourd'hui validés et disponibles pour une investigation poussée des effets des champs électriques sur le vivant.
5

Etude de la perméabilisation de la membrane plasmique et des membranes des organites cellulaires par des agents chimiques et physiques / Study of plasma membrane and organelles membranes permeabilization by chemical and physical agents

Ménorval, Marie-Amélie de 25 November 2013 (has links)
Il est possible de perméabiliser la membrane plasmique des cellules par des agents chimiques (tels que les polyéthylènes glycols ou le diméthylsulfoxyde) ou par des agents physiques (tels que les ultrasons ou les impulsions électriques). Cette perméabilisation peut être réversible ou non, ce qui signifie qu’après la perméabilisation, la membrane retrouve son intégrité et ses propriétés d’hémi-perméabilité ou pas. Ces techniques peuvent être utilisées pour faire rentrer des médicaments ou des acides nucléiques dans les cellules ou pour générer des fusions cellulaires. Une approche récente, la dynamique moléculaire, utilise des simulations numériques pour prédire les effets des agents perméabilisants sur les membranes à l’échelle moléculaire, et permet d’apporter de nouvelles données pour comprendre les mécanismes moléculaires, encore peu connus à ce jour.Les impulsions dites « classiques » en électroperméabilisation, de l’ordre de la dizaine de millisecondes à la centaine de microsecondes et d’amplitude de champ de l’ordre de 100 kV/m, perméabilisent la membrane plasmique uniquement. Cependant, récemment, des impulsions plus courtes, dites impulsions nanoseconde (quelques nanosecondes) et de plus grande amplitude de champ (de l’ordre de 10 MV/m) ont été utilisées et permettent d’affecter également les membranes des organites cellulaires. Les travaux de cette thèse portent dans un premier temps sur les effets perméabilisants d’un agent chimique (le diméthylsulfoxyde, DMSO) en comparant les modèles prédictifs de la dynamique moléculaire avec des expériences in vitro sur des cellules. Le modèle numérique prédit trois régimes d’action en fonction de la concentration du DMSO. Utilisé à faible concentration, il y a déformation de la membrane plasmique. L’utilisation d’une concentration intermédiaire entraîne la formation de pores membranaires et les fortes concentrations de DMSO ont pour conséquence la destruction de la membrane. Les expériences in vitro faites sur des cellules ont confirmé ces résultats en suivant l’entrée de marqueurs de perméabilisation. Cette étude a été comparée avec la perméabilisation par un agent physique (les impulsions électriques). Dans un deuxième temps, ces travaux traitent du développement et de l’utilisation d’un nouveau dispositif d’exposition des cellules aux impulsions nanoseconde qui permet d’appliquer des champs électriques très élevés et d’observer par microscopie leurs au niveau cellulaire. Pour finir, ce dispositif a été utilisé avec des impulsions nanoseconde pour générer des pics calciques dans de cellules souches mésenchymateuses qui présentent des oscillations calciques spontanées liées à leur état de différenciation. Ces pics induits sont dus à la libération de calcium stocké dans les organites et/ou à la perméabilisation de la membrane plasmique permettant l’établissement d’un flux de calcium intramembranaire. Il est aussi possible d’utiliser des impulsions microseconde pour générer des pics calciques dans ces cellules. Dans ce cas, les pics calciques ne sont dus qu’à la perméabilisation de la membrane plasmique. En jouant sur l’amplitude des champs électriques appliqués et sur la présence ou l’absence de calcium externe, il est possible de manipuler les concentrations calciques cytosoliques en mobilisant le calcium interne ou externe. Une des particularités de ces nouveaux outils est de pouvoir être déclenchés et arrêtés instantanément, sans réminiscence, contrairement aux molécules chimiques permettant de produire des pics calciques. Ces outils pourraient donc permettre de mieux comprendre l’implication du calcium dans des mécanismes comme la différenciation, la migration ou la fécondation. / It is possible to permeabilize the cellular plasma membrane by using chemical agents (as polyethylen glycols or diméthylsulfoxyde) or physical agents (as ulstrasounds or electric pulses). This permeabilization can be reversible or not, meaning that after the permeabilization, the membrane recovers its integrity and its hemi-permeable properties. These techniques can be used for the uptake of medicines or nucleic acids or to generate cellular fusions. A recent approach, the molecular dynamics, uses numerical simulations to predict the effects of permeabilizing agents at the molecular scale, allowed generating of new data to understand the molecular mechanisms that are not completely known yet.The pulses so called “classical” in electropermeabilization, from the range of the ten of milliseconds to the hundred of microseconds and with a field amplitude in the range of 100 kV/m, can only permeabilize the plasma membrane. However, more recently, shorter pulses, so called nanopulses (few nanosecondes) and with an higher field amplitude (in the range of 10 MV/m) have been used and allow to affect also cellular organelles membranes.This thesis is, in a first time, about the permeabilizing effects of a chemical gent (the diméthylsulfoxyde, DMSO) by comparing predictive models from molecular dynamics with experiments in vitro on cells. The numerical model predicts three regimes of action depending on the DMSO concentration. Used at low concentration, there is a plasma membrane deformation. The use of an intermediate concentration lead to membrane pores formation and higher DMSO concentrations resulted in membrane destruction. The experiments done in vitro on cells confirmed these results using the following of permeabilization markers. This study has been compared to permeabilization due to a physical agent (electric pulses).Secondly, it is about the development and the use of a new cell exposure device for nanopulses that permit to apply very high electric fields and to observe induced cellular effects simultaneously by microscopy.To finish, this device has been used with nanopulses to generate calcium peaks in mesenchymal stem cells that are presenting spontaneous calcium oscillations in correlation to their differentiation state.. These induced peaks are due to the release of the calcium stored in organelles and/or to plasma membrane permeabilization leading to a intramembrane calcium flux establishment. It is also possible to use microsecond pulses to generate calcium peaks in these cells. In this case, the calcium peaks are due to the plasma membrane permeabilization . By changing the amplitude of the applied electric fields and the presence or the absence of external calcium, it is possible to manipulate cytosolic calcium concentrations by mobilizing internal or external calcium. One feature of these new tools is to be triggered and stopped instantly without reminiscence, unlike chemical molecules permitting the production of calcium peaks. These tools could therefore lead to a better understanding of the involvement of calcium in mechanisms such as differentiation, migration or fertilization.

Page generated in 0.1106 seconds