• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidation characteristics of fluorine-, nitrogen-, and sulfur-containing organic compounds by UV/O3

Chang, Ken-Lin 10 September 2007 (has links)
DMSO (dimethyl sulfoxide) is a liquid with a high boiling point (189 oC) that has been extensively utilized in various industries owing to its ability to dissolve various organic and inorganic compounds. DMSO is increasingly being adopted as a detergent or a photo-resistant stripping solvent in manufacturing semiconductors and liquid crystal displays (LCD). Therefore, DMSO is now a major component of wastewater. The biological treatment of DMSO-containing wastewater generates noxious DMS (dimethyl sulfide) and other compounds that may cause odor problems. Also having a high water solubility and a moderate boiling point (110 oC), tetrafluoro propanol (TFP) has been extensively applied in the manufacture of CD-R and DVD-R, due to its ability to dissolve organic dyes. The spin coating process produces a large amount of wastewater containing TFP. No reports have been written on the biodegradability of TFP to the authors¡¦ knowledge. Additionally, HMDS (hexamethyldisilazane) has been extensively used in life science microscopy and material science. For instance, the semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s). HMDS is classified as a carcinogen, and has an ammonia odor. Condensing incinerators have been found to be unsuitable for treating HMDS-containing waste gases, because of the formation of silicon dioxide, which blocks porous adsorbents. Biological treatment also appears to be unpromising due to its low water solubility and limited biodegradability. This investigation evaluates the feasibility, effectiveness and oxidation characteristics of aqueous DMSO, TFP and gaseous HMDS (hexamethyldisilazane) by UV/O3 processes. A reactor made entirely of acrylic plastic with an effective volume of 10 L was employed for the reactions. The tested VOCs concentrations were adjusted to 400¡V890mg/L and 772¡V887 mg/L for DMSO and TFP, respectively, and the gas (ozone-enriched air) flow rate was controlled at 3L/min. The effects of various solution pH values (acidic, alkaline, uncontrolled), solution temperatures (26 oC, 37 oC, 48 oC and 60 oC), and UV wavelengths (254 nm and 185+254 nm) on the removal of tested VOCs were studied . Additionally, the operation costs of treating DMSO and TFP by UV/O3 were estimated. Experimental results demonstrate that acidic conditions (pH = 3.6) favored the degradation of DMSO, and that the removal efficiency could reach 95% at a volumetric UV intensity P/V of 2.25 W/L and a reaction time of 120 min. However, alkaline conditions (pH = 9.5) favored the decomposition of TFP, with the removal efficiency reaching 95% at P/V = 2.5 W/L and a reaction time of 60 min. Both DMSO and TFP exhibited zero-order degradation kinetics when sufficient ozone was supplied. Raising the oxidation temperature did not increase the UV/O3 oxidation of TFP in the tested concentration and temperature ranges. Operation costs of the UV/O3 per unit volume of wastewater with DMSO or TFP are comparable to those of the methods described in the literature. For the gaseous HMDS oxidation, two batch reactors with effective volumes of 1.2 and 5.8 L were used employed with the decomposition occurred under UV (185+254 nm) irradiation and UV (254 nm)/O3 processes. Tests were performed with initial HMDS concentrations of 32¡V41mg/m3 under various initial ozone dosages (O3 (mg)/HMDS (mg) =1¡V5), atmospheres (N2, O2, and air), temperatures (28 oC, 46 oC, 65 oC and 80 oC), relative humilities (20%, 50%, 65% and 99%) and volumetric UV power inputs (0.87 W/L, 1.74 W/L, 4.07 W/L and 8.16 W/L) to assess their effects on the HMDS degradation rate. Results of this study demonstrate that the decomposition rates for the UV (185+254 nm) irradiation exceeded those for the UV (254 nm)/O3 process for all conditions. UV (185+254 nm) decompositions of HMDS displayed apparent first-order kinetics. A process with irradiation of UV (185+254 nm) to HMDS in air saturated with water at temperatures of 46¡V80 oC favors the HMDS degradation. With the above conditions and a P/V of around 8 W/L, k≈ 0.20 s−1, and over 90% of the initial HMDS was degraded in a time of 12s. The main mechanisms for the HMDS in wet air streams irradiated with UV (185+254 nm) were found to be caused by OH free radical oxidation produced from photolysis of water or O (1D) produced from photolysis of oxygen. Economic evaluation factors of UV (185+254 nm) and UV (254 nm)/O3 processes at various UV power inputs were also estimated.
2

The Development of Appropriate Brine Electrolysers for Disinfection of Rural water supplies

Siguba, Maxhobandile January 2005 (has links)
>Magister Scientiae - MSc / A comparative study of electrolysers using different anodic materials for the electrolysis of brine (sodium chloride) for the production of sodium hypochlorite as a source of A comparative study of electrolysers using different anodic materials for the electrolysis of brine (sodium chloride) for the production of sodium hypochlorite as a source of available chlorine for disinfection of rural water supplies has been undertaken. The electrolyser design used was tubular in form, having two chambers i.e. anode inside and cathode outside, separated by a tubular inorganic ceramic membrane. The anode was made of titanium rod coated with a thin layer of platinum and a further coat of metal oxide. The cathode was made of stainless steel wire. available chlorine for disinfection of rural water supplies has been undertaken. The electrolyser design used was tubular in form, having two chambers i.e. anode inside and cathode outside, separated by a tubular inorganic ceramic membrane. The anode was made of titanium rod coated with a thin layer of platinum and a further coat of metal oxide. The cathode was made of stainless steel wire. An assessment of these electrolysers was undertaken by studying the effects of some variable parameters i.e. current, voltage and sodium chloride concentration. The flow rate was kept unchanged at 50ml/h anolyte and 140ml/h catholyte since it was found to be optimum flow rate for chlorine generation. Figures of merit of the electrolysers were calculated on the basis of three sets of measurements. Analytical methods used for the determination of sodium hypochlorite concentration were iodometric and N, N-Diethyl-p- Phenylenediamine (DPD) titration methods. The DPD titration method was used to determine the chlorine concentration of less than 1mg/L, while the iodometric titration method was used to determine chlorine concentration of ImgIL and above. Sodium chlorate present in the hypochlorite solution was also determined using a spectrophotometric method. The cobalt oxide electrolyser has been shown to be superior as compared to the ruthenium dioxide and manganese dioxide electrolysers in terms of hypochlorite generation. Sodium chlorate was present but at concentration levels not hazardous for use in dosing water for drinking purposes. Analysis of hydroxyl radicals was undertaken since there were claims that these are produced during brine electrolysis. Hydroxyl radical analysis was not successful, since sodium hypochlorite and hypochlorous acid interfere using the analytical method described in this study.
3

Etude de la perméabilisation de la membrane plasmique et des membranes des organites cellulaires par des agents chimiques et physiques / Study of plasma membrane and organelles membranes permeabilization by chemical and physical agents

Ménorval, Marie-Amélie de 25 November 2013 (has links)
Il est possible de perméabiliser la membrane plasmique des cellules par des agents chimiques (tels que les polyéthylènes glycols ou le diméthylsulfoxyde) ou par des agents physiques (tels que les ultrasons ou les impulsions électriques). Cette perméabilisation peut être réversible ou non, ce qui signifie qu’après la perméabilisation, la membrane retrouve son intégrité et ses propriétés d’hémi-perméabilité ou pas. Ces techniques peuvent être utilisées pour faire rentrer des médicaments ou des acides nucléiques dans les cellules ou pour générer des fusions cellulaires. Une approche récente, la dynamique moléculaire, utilise des simulations numériques pour prédire les effets des agents perméabilisants sur les membranes à l’échelle moléculaire, et permet d’apporter de nouvelles données pour comprendre les mécanismes moléculaires, encore peu connus à ce jour.Les impulsions dites « classiques » en électroperméabilisation, de l’ordre de la dizaine de millisecondes à la centaine de microsecondes et d’amplitude de champ de l’ordre de 100 kV/m, perméabilisent la membrane plasmique uniquement. Cependant, récemment, des impulsions plus courtes, dites impulsions nanoseconde (quelques nanosecondes) et de plus grande amplitude de champ (de l’ordre de 10 MV/m) ont été utilisées et permettent d’affecter également les membranes des organites cellulaires. Les travaux de cette thèse portent dans un premier temps sur les effets perméabilisants d’un agent chimique (le diméthylsulfoxyde, DMSO) en comparant les modèles prédictifs de la dynamique moléculaire avec des expériences in vitro sur des cellules. Le modèle numérique prédit trois régimes d’action en fonction de la concentration du DMSO. Utilisé à faible concentration, il y a déformation de la membrane plasmique. L’utilisation d’une concentration intermédiaire entraîne la formation de pores membranaires et les fortes concentrations de DMSO ont pour conséquence la destruction de la membrane. Les expériences in vitro faites sur des cellules ont confirmé ces résultats en suivant l’entrée de marqueurs de perméabilisation. Cette étude a été comparée avec la perméabilisation par un agent physique (les impulsions électriques). Dans un deuxième temps, ces travaux traitent du développement et de l’utilisation d’un nouveau dispositif d’exposition des cellules aux impulsions nanoseconde qui permet d’appliquer des champs électriques très élevés et d’observer par microscopie leurs au niveau cellulaire. Pour finir, ce dispositif a été utilisé avec des impulsions nanoseconde pour générer des pics calciques dans de cellules souches mésenchymateuses qui présentent des oscillations calciques spontanées liées à leur état de différenciation. Ces pics induits sont dus à la libération de calcium stocké dans les organites et/ou à la perméabilisation de la membrane plasmique permettant l’établissement d’un flux de calcium intramembranaire. Il est aussi possible d’utiliser des impulsions microseconde pour générer des pics calciques dans ces cellules. Dans ce cas, les pics calciques ne sont dus qu’à la perméabilisation de la membrane plasmique. En jouant sur l’amplitude des champs électriques appliqués et sur la présence ou l’absence de calcium externe, il est possible de manipuler les concentrations calciques cytosoliques en mobilisant le calcium interne ou externe. Une des particularités de ces nouveaux outils est de pouvoir être déclenchés et arrêtés instantanément, sans réminiscence, contrairement aux molécules chimiques permettant de produire des pics calciques. Ces outils pourraient donc permettre de mieux comprendre l’implication du calcium dans des mécanismes comme la différenciation, la migration ou la fécondation. / It is possible to permeabilize the cellular plasma membrane by using chemical agents (as polyethylen glycols or diméthylsulfoxyde) or physical agents (as ulstrasounds or electric pulses). This permeabilization can be reversible or not, meaning that after the permeabilization, the membrane recovers its integrity and its hemi-permeable properties. These techniques can be used for the uptake of medicines or nucleic acids or to generate cellular fusions. A recent approach, the molecular dynamics, uses numerical simulations to predict the effects of permeabilizing agents at the molecular scale, allowed generating of new data to understand the molecular mechanisms that are not completely known yet.The pulses so called “classical” in electropermeabilization, from the range of the ten of milliseconds to the hundred of microseconds and with a field amplitude in the range of 100 kV/m, can only permeabilize the plasma membrane. However, more recently, shorter pulses, so called nanopulses (few nanosecondes) and with an higher field amplitude (in the range of 10 MV/m) have been used and allow to affect also cellular organelles membranes.This thesis is, in a first time, about the permeabilizing effects of a chemical gent (the diméthylsulfoxyde, DMSO) by comparing predictive models from molecular dynamics with experiments in vitro on cells. The numerical model predicts three regimes of action depending on the DMSO concentration. Used at low concentration, there is a plasma membrane deformation. The use of an intermediate concentration lead to membrane pores formation and higher DMSO concentrations resulted in membrane destruction. The experiments done in vitro on cells confirmed these results using the following of permeabilization markers. This study has been compared to permeabilization due to a physical agent (electric pulses).Secondly, it is about the development and the use of a new cell exposure device for nanopulses that permit to apply very high electric fields and to observe induced cellular effects simultaneously by microscopy.To finish, this device has been used with nanopulses to generate calcium peaks in mesenchymal stem cells that are presenting spontaneous calcium oscillations in correlation to their differentiation state.. These induced peaks are due to the release of the calcium stored in organelles and/or to plasma membrane permeabilization leading to a intramembrane calcium flux establishment. It is also possible to use microsecond pulses to generate calcium peaks in these cells. In this case, the calcium peaks are due to the plasma membrane permeabilization . By changing the amplitude of the applied electric fields and the presence or the absence of external calcium, it is possible to manipulate cytosolic calcium concentrations by mobilizing internal or external calcium. One feature of these new tools is to be triggered and stopped instantly without reminiscence, unlike chemical molecules permitting the production of calcium peaks. These tools could therefore lead to a better understanding of the involvement of calcium in mechanisms such as differentiation, migration or fertilization.
4

Hydrophobicity and Composition-Dependent Anomalies in Aqueous Binary Mixtures, along with some Contribution to Diffusion on Rugged Energy Landscape

Banerjee, Saikat January 2014 (has links) (PDF)
I started writing this thesis not only to obtain a doctoral degree, but also to compile in a particular way all the work that I have done during this time. The articles published during these years can only give a short overview of my research task. I decided to give my own perspective of the things I have learned and the results I have obtained. Some sections are directly the published articles, but some other are not and contain a significant amount of unpublished data. Even in some cases the published plots have been modified / altered to provide more insight or to maintain consistency. Historical perspectives often provide a deep understanding of the problems and have been briefly discussed in some chapters. This thesis contains theoretical and computer simulation studies to under-stand effects of spatial correlation on dynamics in several complex systems. Based on the different phenomena studied, the thesis has been divided into three major parts: I. Pair hydrophobicity, composition-dependent anomalies and structural trans-formations in aqueous binary mixtures II. Microscopic analysis of hydrophobic force law in a two dimensional (2D) water-like model system III. Diffusion of a tagged particle on a rugged energy landscape with spatial correlations The three parts have been further divided into ten chapters. In the following we provide part-wise and chapter-wise outline of the thesis. Part I consists of six chapters, where we focus on several important aqueous binary mixtures of amphiphilic molecules. To start with, Chapter 1 provides an introduction to non-ideality often encountered in aqueous binary mixtures. Here we briefly discuss the existing ideas of structural transformations associated with solvation of a foreign molecule in water, with particular emphasis on the classic “iceberg” model. Over the last decade, several investigations, especially neutron scattering and diffraction experiments, have questioned the validity of existing theories and have given rise to an alternate molecular picture involving micro aggregation of amphiphilic co-solvents in their aqueous binary mixtures. Such microheterogeneity was also supported by other experiments and simulations. In Chapter 2, we present our calculation of the separation dependence of potential of mean force (PMF) between two methane molecules in water-dimethyl sulfoxide (DMSO) mixture, using constrained molecular dynamics simulation. It helps us to understand the composition-dependence of pair hydrophobicity in this binary solvent. We find that pair hydrophobicity in the medium is surprisingly enhanced at DMSO mole fraction xDMSO ≈ 0.15, which explains several anomalous properties of this binary mixture – including the age-old mystery of DMSO being a protein stabilizer at lower concentration and protein destabilizer at higher concentration. Chapter 3 starts with discussion of non-monotonic composition dependence of several other properties in water-DMSO binary mixture, like diffusion coefficient, local composition fluctuation and fluctuations in total dipole moment of the system. All these properties exhibit weak to strong anomalies at low solute concentration. We attempt to provide a physical interpretation of such anomalies. Previous analyses often suggested occurrence of a “structural transformation” (or, microheterogeneity) in aqueous binary mixtures of amphiphilic molecules. We show that this structural transformation can be characterized and better understood under the purview of percolation theory. We define the self-aggregates of DMSO as clusters. Analysis of fractal dimension and cluster size distribution with reference to corresponding “universal” scaling exponents, combined with calculation of weight-averaged fraction of largest cluster and cluster size weight average, reveal a percolation transition of the clusters of DMSO in the anomalous concentration range. The percolation threshold appears at xDMSO ≈ 0.15. The molecular picture suggests that DMSO molecules form segregated islands or micro-aggregates at concentrations below the percolation threshold. Close to the critical concentration, DMSO molecules start forming a spanning cluster which gives rise to a bi-continuous phase (of water-rich region and DMSO-rich region) beyond the threshold of xDMSO ≈ 0.15. This percolation transition might be responsible for composition-dependent anomalies of the binary mixture in this low concentration regime. Similar phenomenon is observed for another amphiphilic molecule – ethanol, as discussed in Chapter 4. We again find composition dependent anomalies in several thermophysical properties, such as local composition fluctuation, radial distribution function of ethyl groups and self-diffusion co-efficient of ethanol. Earlier experiments often suggested distinct structural regimes in water-ethanol mixture at different concentrations. Using the statistical mechanical techniques introduced in the previous chapter, we show that ethanol clusters undergo a percolation transition in the anomalous concentration range. Despite the lack of a precise determination of the percolation threshold, estimate lies in the ethanol mole fraction range xEtOH ≈ 0.075 - 0.10. This difficulty is probably due to transient nature of the clusters (as will be discussed in Chapter 6) and finite size of the system. The scaling of ethanol cluster size distribution and the fractal behavior of ethanol clusters, however, conclusively demonstrate their “spanning” nature. To develop a unified understanding, we further study the composition-dependent anomalies and structural transformations in another amphiphilic molecule, tertiary butyl alcohol (TBA) in Chapter 5. Similar to the above-mentioned aqueous binary mixtures of DMSO and ethanol, we demonstrate here that the anomalies occur due to local structural changes involving self-aggregation of TBA molecules and percolation transition of TBA clusters at xTBA ≈ 0.05. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of the largest water cluster. This second transition gives rise to another set of anomalies around. We conclude this part of the thesis with Chapter 6, where we introduce a novel method for understanding the stability of fluctuating clusters of DMSO, ethanol and TBA in their respective aqueous binary mixtures. We find that TBA clusters are the most stable, whereas ethanol clusters are the most transient among the three representative amphiphilic co-solvents. This correlates well with the amplitude of anomalies observed in these three binary mixtures. Part II deals with the topic of hydrophobic force law in water. In the introductory Chapter 7 of this part, we briefly discuss the concept of hydrophobicity which is believed to be of importance in understanding / explaining the initial processes involved in protein folding. We also discuss the experimental observations of Israelachvili (on the force between hydrophobic plates) and the empirical hydrophobic force law. We briefly touch upon the theoretical back-ground, including Lum-Chandler-Weeks theory. We conclude this chapter with a brief account of relevant and important in silico studies so far. In Chapter 8, we present our studies on Mercedes-Benz (MB) model – a two dimensional model system where circular disks interact with an anisotropic potential. This model was introduced by Ben-Naim and was later parametrized by Dill and co-workers to reproduce many of the anomalous properties of water. Using molecular dynamics simulation, we show that hydrophobic force law is indeed observed in MB model, with a correlation length of ξ=3.79. The simplicity of the model enables us to unravel the underlying physics that leads to this long range force between hydrophobic plates. In accordance with Lum-Chandler-Weeks theory, density fluctuation of MB particles (leading to cavitation) between the hydrophobic rods is clearly distinguishable – but it is not sufficiently long ranged, with density correlation extending only up to ζ=2.45. We find that relative orientation of MB molecules plays an important role in the origin of the hydrophobic force in long range. We define appropriate order parameters to capture the role of orientation, and briefly discuss a plausible approach of an orientation-dependent theory to explain this phenomenon. Part III consists of two chapters and focuses on the diffusion of a Brownian particle on a Gaussian random energy landscape. We articulate the rich history of the problem in the introductory Chapter 9. Despite broad applicability and historical importance of the problem, we have little knowledge about the effect of ruggedness on diffusion at a quantitative level. Every study seems to use the expression of Zwanzig [Proc. Natl. Acad. U.S.A, 85, 2029 (1988)] who derived the effective diffusion coefficient, Deff =D0 exp (-β2ε2 )for a Gaussian random surface with variance ε, but validity of the same has never been tested rigorously. In Chapter 10, we introduce two models of Gaussian random energy surface – a discrete lattice and a continuous field. Using computer simulation and theoretical analyses, we explore many different aspects of the diffusion process. We show that the elegant expression of Zwanzig can be reproduced ex-actly by Rosenfeld diffusion-entropy scaling relationship. Our simulations show that Zwanzig’s expression overestimates diffusion in the uncorrelated Gaussian random lattice – differing even by more than an order of magnitude at moderately high ruggedness (ε>3.0). The disparity originates from the presence of “three-site traps” (TST) on the landscape – which are formed by deep minima flanked by high barriers on either side. Using mean first passage time (MFPT) formalism, we derive an expression for the effective diffusion coefficient, Deff =D0 exp ( -β2ε2)[1 +erf (βε/2)]−1 in the presence of TSTs. This modified expression reproduces the simulation results accurately. Further, in presence of spatial correlation we derive a general expression, which reduces to Zwanzig’s form in the limit of infinite spatial correlation and to the above-mentioned equation in absence of correlation. The Gaussian random field has an inherent spatial correlation. Diffusion coefficient obtained from the Gaussian field – both by simulations and analytical methods – establish the effect of spatial correlation on random walk. We make special note of the fact that presence of TSTs at large ruggedness gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. We characterize the same using non-Gaussian order parameter, and show that this “breakdown” scales with ruggedness following an asymptotic power law. We have discussed the scope of future work at the end of each chapter when-ever appropriate.

Page generated in 0.0595 seconds