Spelling suggestions: "subject:"mrt"" "subject:"imrt""
71 |
The Use of an On-Board MV Imager for Plan Verification of Intensity Modulated Radiation Therapy and Volumetrically Modulated Arc Therapy.Walker, Justin A. 20 August 2013 (has links)
No description available.
|
72 |
A Direct Compensator Profile Optimization Approach For Intensity Modulated Radiation Treatment PlanningErhart, Kevin 01 January 2009 (has links)
Radiation therapy accounts for treatment of over one million cancer patients each year in the United States alone, and its use will continue to grow rapidly in the coming years. Recently, many important advancements have been developed that greatly improve the outcomes and effectiveness of this treatment technique, the most notable being Intensity Modulated Radiation Therapy (IMRT). IMRT is a sophisticated treatment technique where the radiation dose is conformed to the tumor volume, thereby sparing nearby healthy tissue from excessive radiation dose. While IMRT is a valuable tool in the planning of radiation treatments, it is not without its difficulties. This research has created, developed, and tested an innovative approach to IMRT treatment planning, coined Direct Compensator Profile Optimization (DCPO), which is shown to eliminate many of the difficulties typically associated with IMRT planning and delivery using solid compensator based treatment. The major innovation of this technique is that it is a direct delivery parameter optimization approach which has adopted a parameterized surface representation using Non-Uniform Rational B-Splines (NURBs) to replace the conventional beamlet weight optimization approach. This new approach brings with it three key advantages: 1) a reduced number of parameters to optimize, reducing the difficulty of numerical optimization; 2) the ability to ensure complete equivalence of planned and actual manufactured compensators; and 3) direct inclusion of delivery device effects during planning with no performance penalties, eliminating the degrading fluence-to-delivery parameter conversion process. Detailed research into the affects of the DCPO approach on IMRT planning has been completed and a thorough analysis of the developments is provided herein. This research includes a complete description of the DCPO surface representation scheme, inverse planning process, as well as quantification of the manufacturing constraint control procedure. Results are presented which demonstrate the performance and innovation offered by this new approach and show that the resulting compensator shapes can be manufactured to nearly 100 percent of the designed shape.
|
73 |
Commissioning and Implementation of an EPID Based IMRT QA System “Dosimetry Check” for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheckPatel, Jalpa A. 28 December 2010 (has links)
No description available.
|
74 |
Implementation of the Dosimetry Check Software Package in Computing 3D Patient Exit Dose Through Generation of a Deconvolution Kernel to be Used for Patients’ IMRT Treatment Plan QABismack, Brian James 28 December 2010 (has links)
No description available.
|
75 |
THE INFLUENCE OF MACHINE MODEL AND OPTIMIZATION PARAMETERS ON THE GENERATION OF NARROW SEGMENTS IN STEP AND SHOOT INTENSITY MODULATED RADIOTHERAPY PLANS FOR SIMPLIFIED GEOMETRIESMotmaen, Dadgar Maryam 10 1900 (has links)
<p>Generation of narrow segments is a matter of concern in step-and-shoot intensity modulated radiotherapy for several reasons. The measurement, calculation and delivery of dose from narrow segments may be complicated due to: the dosimetric properties of the detector; the effect of beam penumbra and heterogeneities within the patient; and the requirement for high geometric delivery precision respectively. The main purpose of this thesis was to investigate the parameters affecting the generation of narrow beam segments in IMRT optimization. Parameters such as effective source size, Gaussian height and width, density of the target volume, and gap between the tumor and normal tissue were varied to determine their influence on the number of narrow leaf pair separations. The gradient and penumbra were also examined. Two simple geometric models (thick model and thin model) with different dimensions were used. In the thick model, two 6-MV photon beams were incident on the target at right angles. A rectangular target was centered in a phantom with dimensions 20.25 cm×5.25 cm×20.25 cm. In the thin model, one 6-MV photon beam was normally incident on a 20.25 cm×1.25 cm×20.25 cm slab phantom. The relationship between the penumbra and number of narrow separated leaf pairs were examined for the thick model. The results did not show a consistent pattern. For the thin model, creating a gap between the target and the OAR decreased the total number of narrowly separated leaf pairs along the interface but increased the average dose delivered to the OAR. By varying the OAR max dose or the gap between the target and OAR, a peak was created in the dose profiles to compensate the penumbra. As gradient increased the peak height increased to compensate the dose fall-off. The width of the peak at half maximum changed with gradient but not in a predictable fashion.</p> / Master of Science (MSc)
|
76 |
DOSE-BASED EVALUATION OF A PROSTATE BED PROTOCOLDona, Lemus M. Olga 10 1900 (has links)
<p>The image-guided radiation therapy (IGRT) protocol used at Juravinski Cancer Center for post-prostatectomy patients involves acquiring a kV cone beam computed tomography (CBCT) image at each fraction and shifting the treatment couch to align surgical clips. This IGRT strategy is promising but its dosimetric impact is unknown, it requires significant resources, and delivers non-negligible doses to normal tissues. The objective of this work is to evaluate this IGRT protocol and investigate possible alternatives.</p> <p>IGRT delivered dose is reconstructed by deforming the planning CT to the CBCT images acquired at each fraction, computing dose on the deformed images, and inversely transforming the dose back to the original geometry. The treatments of six patients were evaluated under four scenarios: no guidance (Non-IGRT), daily guidance as performed clinically (IGRT), guidance on alternating days (Alt-IGRT), and daily automated guidance (Auto-IGRT). For one patient, the impact of reducing the planning target volume (PTV) margin to five (IGRT-5) and eight (IGRT-8) mm isotropic was also evaluated.</p> <p>With the standard clinical PTV margin of ten/seven mm, the evaluated alternatives produced similar results. The minimum dose to the CTV was decreased by 1.6±1.0, 1.2±0.7, and 0.8±0.8 Gy for Non-IGRT, Alt-IGRT, and IGRT, respectively. IGRT with manual shifting did not appear to significantly improve the delivered treatment dose compared to Auto-IGRT (difference in CTV minimum dose was 1.2±2.1Gy). Doses to the organs at risk varied but in general, an increased volume of the bladder and rectum received low doses while smaller portions received high doses. The IGRT-5 and -8 analyses showed the same CTV dose can be delivered with significant reduction in normal tissue exposure. Overall, the desired doses are delivered during IGRT although much of this may be attributed to the large PTV margins currently employed clinically.</p> / Master of Science (MSc)
|
77 |
A Study of IMRT Pre-Treatment Dose Verification Using a-Si Electronic Portal Imaging DevicesNichita, Eleodor 04 1900 (has links)
<p>Intensity-Modulated Radiation Treatment (IMRT) requires patient-specific quality assurance measurements, which can benefit from the convenience of using an Electronic Portal Imaging Device (EPID) for dose verification. However, EPIDs have limitations stemming from the non-uniform backscatter due to the support-arm as well as from scatter, glare, and an increased sensitivity to low-energy photons. None of these effects is typically accounted for in a treatment planning system (TPS) model, resulting in errors in calculated EPID response of up to 6%. This work addresses the non-uniform backscatter by directly incorporating a support-arm backscatter region into the TPS geometry. The shape of the backscatter region is adjusted iteratively until the TPS-calculated flood-field planar dose matches the flood-field EPID image The scatter, glare and increased low-energy response are addressed by using a radially-dependent Point-Spread Function (Kernel). The kernel is fitted using a least-squares method so that it best reproduces the EPID-acquired image for a checkerboard field. The backscatter-correction method is implemented for a Varian Clinac equipped with a 40 cm x 30 cm (512 x 384 pixel) EPID and a Pinnacle<sup>3</sup> TPS and tested for several rectangular and IMRT fields. The scatter, glare and energy-response correction kernel is implemented and tested for a simulated checkerboard field and a simulated IMRT field. Agreement between the EPID-measured image and TPS-calculated planar dose map is seen to improve from 6% to 2% when the backscatter region is added to the Pinnacle<sup>3</sup> model. Agreement between the simulated EPID images and simulated TPS images is improved from 14% to approx. 1% when the radially-dependent kernel is used. Simultaneous application of both the backscatter region and Point-Spread Function is a promising direction for future investigations.</p> / Master of Science (MSc)
|
78 |
A RADIOTHERAPY PLAN SELECTOR USING CASE-BASED REASONINGZziwa, Aloysious January 2010 (has links)
Developing a head and neck cancer treatment plan for a candidate of Intensity Modulated Radiation Therapy (IMRT) requires extensive domain knowledge and subjective experience. Therefore, it takes a cancer treatment team at least 2 to 3 days to develop such a plan from scratch. Many times the team may not use a reference plan. Sometimes, to reduce the amount of time taken to generate each treatment plan, these experts recall a patient, whose plan they recently prepared, and who had similar symptoms as the candidate. Using this recalled patient's plan as the starting point, the cancer treatment team modifies it based on the differences in the symptoms of the new candidate and those of the reference patient record. The resultant plan after modification is presented as the new treatment plan for the oncologist to evaluate its suitability for treatment of the candidate. This approach is heavily dependent on the team's choice of the reference patient record. Choosing a starting treatment plan where the patient's symptoms are not the closest to the new candidate implies that more time will be spent modifying the plan than is necessary and the resultant treatment plan may not be the best achievable under the same circumstances given a better starting plan. Therefore, the team's bias in choosing the starting plan may affect the quality of treatment plan that is finally produced for the candidate. This thesis proposes a system that behaves like an un-biased radiotherapy expert - following a similar process and standards as the human experts and which searches the entire IMRT patient database and returns the record (with patient symptoms and treatment plan) for a patient whose symptoms are most similar to the candidate's symptoms. It takes in the new candidate's information (from diagnosis, scans of the tumor and interviews with the candidate), searches the database and prints out a patient record showing another patient's treatment plan as the suggested starting point for generating the new plan. The system uses Case-Based Reasoning (CBR) because it mimics the experts' approach since it makes use of previous successes and shuns reasoning that has failed in the past. This occurs by considering only treatment plans that have been implemented successfully on patients in the hospital archive. For this thesis, CBR is applied using fuzzy IF-THEN rules to search the patient database. Fuzzy logic is used because it can handle imprecise expressions commonly used in natural language to determine the appropriate weight of the patient attributes in the search process. Filtering of patient records based on parameter value ranges is also used to reduce the number of records that have to be compared. The system code developed for this thesis was prepared in Java and C Language Integrated Production System (CLIPS) using the Java Expert System Shell (JESS). This system is part of a bigger expert system that is being prepared by the Intelligent Systems Applications Center (ISAC) for Thomas Jefferson University Hospital, expected to generate a radiotherapy plan for a patient designated for IMRT treatment. Initial results from the developed prototype prove the viability of selecting similar patients using CBR. It is important to note that the overall objective of the project is to build a system that effectively aids decision support by the IMRT team when generating a new treatment plan and not to replace them. The team is expected to use the generated plan as a starting point in determining a new treatment plan. If the generated plan is sufficient, the oncologist and their team will have to check this plan (in their various capacities) against expected standards for quality control before passing it on for implementation. This will save them time in planning and allow them to focus more on the patient's needs hence a higher quality of life for the patient after treatment. / Electrical and Computer Engineering
|
79 |
Dosimetria gel no controle de qualidade tridimensional para radioterapia de intensidade modulada (IMRT) de próstata / Gel dosimetry in three-dimensional quality control for Intensity Modulated Radiation Therapy (IMRT) for ProstateSilveira, Matheus Antônio da 29 April 2014 (has links)
A radioterapia de intensidade modulada (IMRT) é uma das mais modernas técnicas radioterapêuticas que permite a entrega de elevadas e complexas distribuição de doses ao volume tumoral, que necessita de novos métodos para o controle de qualidade dos procedimentos efetuados. Nos serviços de radioterapia costuma-se usar para o controle de qualidade do sistema de planejamento, a câmara de ionização para verificação pontual da dose e um dispositivo com diodos semicondutores (MapCHECK2) para a verificação bidimensional em um plano da fluência planejada, entretanto, para a verificação tridimensional dessas distribuições de doses ainda não há um dosímetro consolidado na rotina clínica. Nesse contexto, para a dosimetria tridimensional se destacam os géis poliméricos. Neste trabalho foram feitas a dosimetria convencional, pontual e bidimensional como se faz na rotina clínica e a dosimetria tridimensional utilizando o gel polimérico Magic-f, que apresenta a distribuição de dose volumétrica. Para este trabalho foi escolhido o tratamento de câncer de próstata, pois na atualidade é um dos tipos de cânceres mais comuns entre os homens. No contexto da dosimetria gel, para se obter a informação volumétrica é necessária uma técnica de imagem, no presente caso foram utilizadas imagens por ressonância magnética (magnetic resonance imaging, MRI). A partir dessas imagens é possível determinar as distribuições de doses processando-as em um software desenvolvido pelo grupo que determina as taxas de relaxação R2 associada à dose absorvida e posteriormente comparar as imagens obtidas com as imagens do sistema de planejamento. Para isso, se obteve dez cortes ao longo de cada simulador físico ou fantom em que sua comparação foi feita com a respectiva fatia do sistema de planejamento, na posição correspondente. Para uma avaliação quantitativa foi utilizado o conceito de índice gama, no critério padrão da radioterapia, 3% da dose e 3mm de distância de concordância. Os resultados obtidos com a dosimetria gel se mostram de acordo com os controles de qualidade convencionais e oferecem uma visão global da distribuição de dose no volume alvo. / The intensity modulated radiotherapy (IMRT) is one of the most modern radiotherapeutic technique that enables the delivery of high and complexes conformational doses to the tumor volume, that requires new methods for the quality assurance of the procedures performed. Radiotherapy services usually perform quality assurance of the planning system with the ionization chamber for spot-checking and an array of semiconductor diodes (MapCHECK2) to check on a two-dimensional plane, however for tridimensional dose verification does not exist an established dosimeter in the clinical routine. In this context, for three-dimensional dosimetry the polymeric gels were used. In This work the conventional one and two-dimensional dosimetry as employed in the clinical routine, and the three-dimensional dosimetry using polymer gel MAGIC- f, which provide the volumetric dose distribution. Prostate cancer clinical cases were chosen for this work because this kind of tumor is one of the most common cases in male individuals. In the context of dosimetry gel to obtain volumetric information an imaging technique is necessary, in this case the magnetic resonance imaging (MRI), was used to measure the dose. From these images it is possible to determine the distributions of doses processing them in a software developed by our research group that determines R2 relaxation rates associated with the absorbed dose and subsequently compare the images obtained with the images of the planning system. For this, ten slices were obtained along each phantom, and comparisons were made with the respective slice of the treatment planning system, in the corresponding position. For a quantitative evaluation of the gamma index , in the standard criterion in radiotherapy, 3 % dose and 3 mm distance to agreement was used. The results obtained shown that gel dosimetry agrees with the conventional quality controls and provide an overview of dose distribution in the target volume.
|
80 |
Investigation of Buildup Dose for Therapeutic Intensity Modulated Photon Beams in Radiation TherapyJavedan, Khosrow 14 July 2010 (has links)
Buildup dose of Mega Voltage (MV) photon beams can be a limiting factor in intensitymodulated radiation therapy (IMRT) treatments. Excessive doses can cause patient discomfort and treatment interruptions, while underdosing may lead to local failure.
Many factors which contribute to buildup dose, including the photon beam energy spectrum, scattered or contaminant radiation and their angular distribution, are not modeled well in commercial treatment planning systems. The accurate Monte Carlo method was employed in the studies to estimate the doses.
Buildup dose of 6MV photon beams was investigated for three fundamentally different IMRT modalities: between Helical TomoTherapy and traditional opposed tangential beams, solid IMRT and multileaf collimator (MLC)-based IMRT techniques. Solid IMRT, as an alternative to MLC, achieves prescription dose distribution objectives, according to our study.
Measurements and Monte Carlo calculations of buildup dose in chest wall treatment were compared between TomoTherapy IMRT and traditional tangential-beam technique. The effect of bolus in helical delivery was also investigated in this study.
In addition, measurements and Monte Carlo calculations of buildup dose in solid IMRT and MLC based IMRT treatment modalities were compared. A brass step compensator was designed and built for the solid IMRT. Matching MLC step sequences were used for the MLC IMRT.
This dissertation also presents the commissioning of a Monte Carlo code system, BEAMnrc, for a Varian Trilogy linear accelerator (LINAC) and the application in buildup dose calculation. Scattered dose components, MLC component dose and mean spectral energy for the IMRT treatment techniques were analyzed.
The agreement between measured 6MV and calculated depth dose and beam profiles was (± 1% or ±1 mm) for 10x10 and 40x40 cm2 fields. The optimum electron beam energy and its radial distribution incident on tungsten target were found to be 6 MeV and 1 mm respectively.
The helical delivery study concluded that buildup dose is higher with TomoTherapy compared to the opposed tangential technique in chest wall treatment. The solid and MLC IMRT comparison concluded that buildup dose was up to 7% lower for solid IMRT compared to MLC IMRT due to beam hardening of brass.
|
Page generated in 0.0406 seconds