• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inégalités fonctionnelles liées aux formes de Dirichlet. De l'isopérimétrie aux inégalités de Sobolev.

Fougères, Pierre 18 October 2002 (has links) (PDF)
Les semi-groupes de Markov ergodiques permettent d'approcher des mesures de probabilité au moyen d'inégalités fonctionnelles. L'objectif de la thèse est l'étude de certaines de ces inégalités, de l'isopérimétrie gaussienne aux inégalités de Sobolev. Nous cherchons essentiellement à établir des liens entre elles, à déterminer leurs constantes optimales et à obtenir des critères assurant leur existence. Le travail est divisé en trois parties. Dans la première , nous nous intéressons aux liens entre les inégalités de Sobolev logarithmiques (SL) et celles d'?isopérimétrie gaussienne de Bobkov (IGB). Nous montrons qu'?un semi-groupe de courbure minorée (éventuellement négative) qui satisfait à (SL) vérifie également une inégalité (IGB). Nous obtenons ainsi une inégalité (IGB) pour certains systèmes de spins. Dans la seconde partie, nous montrons que la constante de Poincaré d'une mesure de probabilité log-concave sur la droite réelle est universellement comparable au carré de la distance moyenne à la médiane. La preuve repose sur un calcul de variations dans l'ensemble des fonctions convexes. La dernière partie est consacrée à de nouveaux critères conduisant aux inégalités de Sobolev lorsque le critère de courbure-dimension (CD) de Bakry et Emery est mis en défaut. La technique utilisée repose sur la construction (au moyen de changements conformes de métrique et tensorisation) d?'une structure de Dirichlet en dimension supérieure qui satisfait un critère (CD) et se projette sur la structure de départ.
2

Symmetrizations, symmetry of critical points and L1 estimates

Van Schaftingen, Jean 19 May 2005 (has links)
The first part of this thesis is devoted to symmetrizations. Symmetrizations are tranformations of functions that preserve many properties of functions and enhance their symmetry. In the calculus of variation they are a simple and powerful tool to prove that minimizers of functionals are symmetric functions. In this work, the approximation of symmetrizations by simpler symmetrizations is investigated: The existence of a universal approximating sequence is proved, sufficient conditions for deterministic and random sequences to be approximating are given. These approximation methods are then used to prove some symmetry properties of critical points obtained by minimax methods: For example if there is a solution obtained by the mountain pass theorem, then there is a symmetric solution with the same energy. This part ends with a study of the properties of anisotropic symmetrizations i.e. symmetrizations performed with respect to noneuclidean norms. The second part is devoted to L^1 estimates.  In general, the second derivative of the solution of the Poisson equation with L^1 data fails to be in L^1. Recently it was proved that if the data is a L^1 divergence-free vector-field, then even if in general it is false that the second derivative of the solution is in L^1, all the consequences thereof by Sobolev embeddings hold. Elementary proofs of such results, as well as a generalization with a second order operator replacing the divergence, are given. / La première partie de cette thèse est consacrée aux symétrisations. Les symétrisations sont des transformations de fonctions qui préservent de nombreuses propriétés des fonctions et qui améliorent leur symétrie. Elles sont un outil simple et puissant pour montrer dans le calcul des variations que les minimiseurs de certaines fonctionnelles sont des fonctions symétriques. Dans ce travail, nous étudions l'approximation des symétrisations par des symétrisations plus simples. Nous prouvons l'existence d'une suite approximante universelle et nous donnons des conditions suffisantes pour que des suites déterministes et aléatoires soient approximantes. Nous utilisons ensuite ces méthodes d'approximation pour prouver des propriétés de symétrie de points critiques obtenus par des méthodes de minimax. Par exemple, s'il y a une solution obtenue par le théorème du col, alors il y a une solution symétrique de même énergie. Nous achevons cette partie par une étude des symétrisations anisotropes (symétrisations par rapport à des normes non euclidiennes). La seconde partie est consacrée aux estimations L^1. En général, les dérivées secondes de la solution de l'équation de Poisson avec des données L^1 ne sont pas dans L^1. Recemment, on a prouvé que si les données sont un champ de vecteurs L^1 à divergence nulle, même si en général les dérivées secondes ne sont toujours pas dans L^1, toutes les conséquences qui en suivraient par les injections de Sobolev sont vraies. Nous donnons des preuves élémentaires de ces résultats, avec une extension où la divergence est remplacée par un opérateur différentiel du second ordre.

Page generated in 0.0587 seconds