Spelling suggestions: "subject:"inflamação"" "subject:"infamação""
1 |
Preparação de carreadores lipídicos nanoestruturados a partir de cera de carnaúba e óleo de pracaxi contendo dexametasona para tratamento tópico de inflamações cutâneasDUARTE JUNIOR, Anivaldo Pereira 20 May 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-05-25T13:40:41Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Tese_Anivaldo_Pereira_Duarte_Junior.pdf: 10191822 bytes, checksum: 646b55c8dd337a59ccd673e84bb95f92 (MD5) / Made available in DSpace on 2017-05-25T13:40:41Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Tese_Anivaldo_Pereira_Duarte_Junior.pdf: 10191822 bytes, checksum: 646b55c8dd337a59ccd673e84bb95f92 (MD5)
Previous issue date: 2016-05-20 / CAPES / Carreadores lipídicos nanoestruturados (CLN) são sistemas coloidais que apresentam
potencial de uso tópico. A utilização de constituintes de origem natural se apresenta como
alternativa aos lipídios sintéticos, por isso a cera de carnaúba e óleo de pracaxi foram
utilizados na preparação de CLN contendo dexametasona (DXM) com finalidade de tratar
inflamações cutâneas. A caracterização do óleo foi realizada através da determinação da
composição de ácidos graxos por cromatografia gasosa acoplada a detector de ionização
de chama (CG-FID), densidade, viscosidade dinâmica e cinemática utilizando viscosímetro
rotacional e EHL requerido. A elaboração de diagrama pseudoternário de fases
(óleo/tensoativos/água), avaliação da mistura de cera/óleo por DSC e DRX, determinação
do coeficiente de partição da DXM em óleo de pracaxi/água e a solubilidade em óleo de
pracaxi também foram realizadas. A metodologia analítica por CLAE acoplada a detector
UV para quantificação da DXM foi validada e um planejamento experimental fracionado
seguido de composto central foi executado com objetivo de obter CLN em torno de 200nm,
PDI
≤ 0,4 e maior eficiência de incorporação da DXM. O perfil e modelo cinético da
liberação in vitro foi estabelecido e avaliou-se a penetração e/ou permeação cutânea in
vitro da DXM em pele de orelha de porco utilizando células de difusão de Franz. O óleo
de pracaxi contém 17% de ácido behênico e densidade de 0,90
−0,85g/cm3, viscosidade
dinâmica de 65,75
−7,77mPa/s e cinemática de 72,99−9,09mm2/s entre 30−100℃. O
EHL requerido do óleo de pracaxi foi 8,8 para Tween® 80 e Span® 60 (40:60) e o diagrama
pseudoternário apresentou região de emulsão liquida leitosa com proporção de água a
partir de 38% e a ocorrência de nanoemulsão (tamanho de 131,6
−258,3nm) com proporção
de água de 87,5%. As misturas lipídicas apresentaram índice de cristalinidade de
71,88% e 31,93% em comparação com a cera de carnaúba. O método analítico apresentou
parâmetros de validação adequados e a solubilidade da DXM em óleo de pracaxi foi de
190,16µg/mL. O log P da DXM em óleo de pracaxi/água foi de -0,4250. O CLN composto
por DXM (0,15%), lipídios 10% (40% de óleo de pracaxi), tensoativos 5%, obtido com
um ciclo de homogeneização e pressão de 600bar apresentou tamanho de 173,26nm, PDI
0,166 e eficiência de incorporação de DXM de 49,30%. O perfil cinético das formulações
CLN-DXM e Gel DXM foi ajustado por modelo linear, com velocidades de 11,59
± 0,49 µg/cm2/h e 2,42
± 0,25µg/cm2/h, respectivamente. Entretanto, a formulação Gel CLNDXM
apresentou perfil cinético melhor ajustado ao modelo de Higuchi, de acordo com a
equação Q=15,64.t0,5
(2−12h)−18,432 (r
2
=0,9903). Os ensaios em pele não apresentaram
absorção percutânea. A retenção da DXM no estrato córneo foi de 0,80
± 0,13, 0,77± 0,15
e 0,16
± 0,03µg/cm2 e na pele remanescente de 0,96± 0,17, 0,49± 0,18 e 0,13± 0,03 µg/cm2 para as formulações Gel CLN-DXM, Gel DXM e Creme DXM, respectivamente.
A formulação Gel CLN-DXM promoveu penetração significativamente maior da DXM nas
camadas profundas da pele em comparação às demais formulações, apresentando assim,
possibilidade de exercer maior eficácia terapêutica da DXM. / Nanostructured lipid carriers (NLC) are colloidal systems that have potential for topical
drug delivery. The use of natural lipids is an alternative to synthetic lipids and therefore
carnauba wax and pracaxi oil were used to obtain dexamethasone-loaded NLC to treat
skin inflammation. Pracaxi oil characterization was performed by fatty acids determination
using gas chromatography coupled to a flame ionization detector (GC-FID). Density,
kinematic and dynamic viscosities using a rotational viscometer and required HLB value
were determined. Furthemore, pseudo ternary phase diagram (oil/surfactants/water),
dispersed systems evaluation, wax/oil lipid mixture investigation by x-ray difraction and
DSC, DXM partition coeficient in pracaxi oil/water and DXM solubility in pracaxi oil
were determined. Analytical method for determining DXM content using HPLC coupled
to an UV detector was validated. A fractional factorial and central composite designs to
determine a CLN formulation with size around 200nm, PDI
≤ 0.4 and the best DXM
incorporation efficiency was developed. The DXM in vitro release kinetic profile was
evaluated and a kinetic model established. In vitro penetration and/or permeation in
porcine ear skin using Franz diffusion cells was evaluated. Pracaxi oil contains 17% of
behenic acid and presents a density, dynamic and kinematic viscosities, between 30
−100℃,
of 0.90
−0.85g/cm3, 65.75−7.77mPa/s and 72.99−9.09mm2/s, respectively. Pracaxi oil
required HLB was 8.8 using Tween® 80 and Span® 60 (40:60) surfactants. Pseudo ternary
phase diagram presented a milky liquid emulsion region starting with 38% of water and
the occurrence of nanoemulsion (size of 131.6
−258.3nm) at 87.5% of water. Lipid mixtures
of pracaxi oil/carnauba wax showed crystallinity index varying from 71.88% to 31.93%
comparedwithcarnaubawax.TheanalyticalmethodwassuitableforDXMdeterminations
and the DXM solubility in pracaxi oil was 190.16µg/mL. The log P value of DXM in
pracaxi oil/water was
−0.4250. The CLN consisted of DXM 0.15%, 10% lipids (40%
pracaxi oil), 5% surfactants was obtained with one homogenisation cycle and 600bar
pressure, presented a particle size of 173.26nm, PDI of 0.166 and DXM encapsulation
efficiency of 49.30%. The kinetic profile of CLN-DXM and DXM gel formulations was
fitted by linear model, with speeds of 11.59
± 0.49µg/cm2/hr, and 2.42± 0.25µg/cm2/hr,
respectively. However, the CLN-DXM gel formulation presented kinetic profile best fitted
to Higuchi model, according to the equation Q=15,64.t0,5
(2−12h)−18,432 (r
2
=0,9903). Skin
penetration/permeation studies showed no percutaneous absorption. The formulations
DXM-NLC/gel, DXM-gel and DXM cream showed DXM retention in stratum corneum
layer of 0.80
± 0.13, 0.77± 0.15 e 0.16± 0.03µg/cm2, and in remaining skin of 0.96± 0.17, 0.49
± 0.18 e 0.13± 0.03µg/cm2, respectively. From these findings DXM-NLC/gel
promoted significantly higher DXM penetration in deep skin in comparison with other
DXM formulations, thus demonstrating a possible better DXM-NLC/gel therapeutic
efficacy.
|
Page generated in 0.0343 seconds