Spelling suggestions: "subject:"In vitro motility"" "subject:"In nitro motility""
1 |
Effects of regulatory light chain phosphorylation on mutant and wild-type cardiac muscle myosin mechanochemistryKarabina, Anastasia Smaro 03 November 2015 (has links)
Cardiac muscle contraction is responsible for pumping blood throughout the body. The cyclical, ATP-hydrolysis dependent interaction of the myosin motor protein with filamentous actin drives muscle contraction. During this process the α-helical neck region of myosin acts as a lever arm, transmitting contractile force between thick and thin filaments by amplifying small conformational changes in the myosin motor domain. The resulting relative displacement of thick and thin filaments causes muscle shortening. The regulatory light chain (RLC) of myosin mechanically supports the lever arm by binding to the myosin heavy chain neck region; this is a crucial interaction in maintaining myosin's ability to produce force and motion. We investigated the role of N-terminal modifications of the RLC in modulating actomyosin contractility at the molecular level. Phosphorylation of the RLC is a naturally occurring post-translational modification of the RLC N-terminus that is important for cardiac function and has been shown to enhance contractility at the cellular level. In contrast, genetic mutations of the RLC that lead to familial hypertrophic cardiomyopathy (FHC) disrupt cardiac function and trigger remodeling of the cardiac muscle structure. We studied two FHC-linked mutations, N47K and R58Q, located in the N-terminus of the RLC in close proximity to the phosphorylation site. Using in vitro motility assays we examined how RLC modifications affect the mechanochemical properties of cardiac β-myosin. We found that the FHC mutations reduced myosin force and power generation, in contrast to RLC phosphorylation which increased myosin force and power for WT and mutant myosins. Phosphorylation of mutant RLC resulted in a restoration of the mutation-induced decreases in contractility to WT dephosphorylated levels. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the fundamental contractile FHC-induced phenotype.
|
2 |
Celluar and Molecular Mechanisms Underlying Regulation of Skeletal Muscle Contraction in Health and DiseaseLi, Mingxin January 2010 (has links)
Morphological changes, genetic modifications, and cell functional alterations are not always parallel. Therefore, assessment of skeletal muscle function is an integral part of the etiological approach. The general objective of this thesis was to look into the cellular and molecular events occurring in skeletal muscle contraction in healthy and diseased condition, using a single fiber preparation and a single fiber in vitro motility assay, in an attempt to approach the underlying mechanisms from different physiological angles. In a body size related muscle contractility study, scaling of actin filament sliding speed and its temperature sensitivity has been investigated in mammals covering a 5,500-fold difference in body mass. A profound temperature dependence of actin filament sliding speed over myosin head was demonstrated irrespective of MyHC isoform expression and species. However, the expected body size related scaling within orthologus myosin isoforms between species failed to be maintained at any temperature over 5,500-fold range in body mass, with the larger species frequently having faster in vitro motility speeds than the smaller species. This suggest that apart from the MyHC iso-form expression, other factors such as thin filament proteins and myofilament lattice spacing, may contribute to the scaling related regulation of skeletal muscle contractility. A study of a novel R133W β-tropomyosin mutation on regulation of skeletal muscle contraction in the skinned single fiber prepration and single fiber in vitro motility assay suggested that the mutation induced alteration in myosin-actin kinetics causing a reduced number of myosin molecules in the strong actin binding state, resulting in overall muscle weakness in the absence of muscle wasting. A study on a type IIa MyHC isoform missense mutation at the motor protein level demonstrated a significant negative effect on the function of the IIa MyHC isoform while other myosin isoforms had normal function. This provides evidence that the pathogenesis of the MyHC IIa E706K myopathy involves defective function of the mutated myosin as well as alterations in the structural integrity of all muscle irrespective of MyHC isoform expression.
|
3 |
Practical applications for an actomyosin-based biosensor in Baltic Sea waterPennsäter, Maria January 2013 (has links)
Seawater and wastewater all around the world contain toxins and pollutants, not the least drug residues, including hormoneswhich disturb the ecosystems and antibiotics with growing multi-drug resistance of bacteria as a result. The effects onecosystems and mankind can be severe and with this general fact the need for proper analysis devices increases. This haspromoted further studies to establish devices for detection of analytes with high selectivity and high sensitivity. In this thesis Ipresent a unique device exploiting capture of antigen on antibody conjugated actin filaments and subsequent transportationof the antigen in Baltic Sea water using heavy meromyosin (HMM) motor fragments from muscle myosin. The model-antibody,anti-rIgG, used in the study, was covalently attached to the actin filaments, capturing a model-analyte, rIgG that was dissolvedin the Sea water. Furthermore, the effect of Baltic Sea water on HMM propelled actin filament transportation in the in vitromotility assay was studied. An effect was observed with Baltic Sea water, supplemented with standard adenosine 5’-triphosphate (ATP) and oxygen scavenger systems, reducing the sliding velocity by approximately 80%. However the effect wasreversible which is of great advantage in relation to the development of a future biosensor device incorporating actomyosindriven transports. Additionally, evidence was found that the substance A slightly enhanced the function of the proteins whenstored on a motility assay surface at 4-8 °C for up to ten days, of value for practical applications of a potential biosensordevice. The results demonstrate the potential that antigen from sea water could be captured and transported by actomyosinto certain detector areas and eventually become concentrated which would increase the sensitivity of the device.
|
4 |
Characterization and optimization of the in vitro motility assay for fundamental studies of myosin IIPersson, Malin January 2013 (has links)
Myosin II is the molecular motor responsible for muscle contraction. It transforms the chemical energy in ATP into mechanical work while interacting with actin filaments in so called cross-bridge cycles. Myosin II or its proteolytic fragments e.g., heavy meromyosin (HMM) can be adsorbed to moderately hydrophobic surfaces in vitro, while maintaining their ability to translocate actin filaments. This enables observation of myosin-induced actin filament sliding in a microscope. This “in vitro motility assay” (IVMA) is readily used in fundamental studies of actomyosin, including studies of muscle contraction. The degree of correlation of the myosin II function in the IVMA with its function in muscle depends on how the myosin molecules are arranged on the surface. Therefore a multi-technique approach, including total internal reflection spectroscopy, fluorescence interference contrast microscopy and quartz crystal microbalance with dissipation, was applied to characterize the HMM surface configurations. Several configurations with varying distributions were identified depending on the surface property. The most favorable HMM configurations for actin binding were observed on moderately hydrophobic surfaces. The effects on actomyosin function of different cargo sizes and amount of cargo loaded on an actin filament were also investigated. No difference in sliding velocities could be observed, independent of cargo size indicating that diffusional processive runs of myosin II along an actin filament are not crucial for actomyosin function in muscle. Furthermore, a tool for accurate velocity measurements appropriate for IVMAs at low [MgATP] was developed by utilizing the actin filament capping protein CapZ. These improvements allowed an investigation of the [MgATP]-velocity relationship to study possible processivity in fast skeletal muscle myosin II. It is shown that the [MgATP]–velocity relationship is well described by a Michaelis-Menten hyperbola. In addition, statistical cross-bridge modeling showed that the experimental results are in good agreement with recent findings of actomyosin cross-bridge properties, e.g., non-linear cross-bridge elasticity. However, no effect of inter-head cooperativity could be observed. In conclusion, the described results have contributed to in-depth understanding of the actomyosin cross-bridge cycle in muscle contraction.
|
5 |
A novel parabolic prism-type TIR microscope to study gold nanoparticle-loaded kinesin-1 motors with nanometer precisionSchneider, René 21 February 2013 (has links)
Movement of motor proteins along cytoskeletal filaments is fundamental for various cellular processes ranging from muscle contraction over cell division and flagellar movement to intracellular transport. Not surprisingly, the impairment of motility was shown to cause severe diseases. For example, a link between impaired intracellular transport and neurodegenerative diseases, such as Alzheimer’s, has been established. There, the movement of kinesin-1, a neuronal motor protein transporting vesicles along microtubules toward the axonal terminal, is thought to be strongly affected by roadblocks leading to malfunction and death of the nerve cell. Detailed information on how the motility of kinesin-1 deteriorates in the presence of roadblocks and whether the motor has a mechanism to circumvent such obstructions is scarce. In this thesis, kinesin-1 motility was studied in vitro in the presence of rigor kinesin-1 mutants, which served as permanent roadblocks, under controlled single-molecule conditions.
The 25 nm wide microtubule track, consisting of 13 individual protofilaments, resembles a multi-lane environment for transport by processive kinesin-1 motors. The existence of multiple traffic-lanes, allows kinesin-1 to utilize different paths for cargo transport and potentially also for the circumvention of roadblocks. However, direct observation of motor encounters with roadblocks has been intricate in the past, mainly due to limitations in both, spatial and temporal resolution. These limitations, intrinsic to fluorescent probes commonly utilized to report on the motor positions, originate from a low rate of photon generation (low brightness) and a limited photostability (short observation time). Thus, studying kinesin-1 encounters with microtubule-associated roadblocks requires alternative labels, which explicitly avoid the shortcomings of fluorescence and consequently allow for a higher localization precision.
Promising candidates for replacing fluorescent dyes are gold nanoparticles (AuNPs), which offer an enormous scattering cross-section due to plasmon resonance in the visible part of the optical spectrum.
Problematic, however, is their incorporation into conventionally used (fluorescence) microscopes, because illumination and scattered light have the same wavelength and cannot be separated spectrally. Therefore, an approach based on total internal reflection (TIR) utilizing a novel parabolically shaped quartz prism for illumination was developed within this thesis. This approach provided homogenous and spatially invariant illumination profiles in combination with a convenient control over a wide range of illumination angles. Moreover, single-molecule fluorescence as well as single-particle scattering were detectable with high signal-to-noise ratios. Importantly, AuNPs with a diameter of 40 nm provided sub-nanometer localization accuracies within millisecond integration times and reliably reported on the characteristic 8 nm stepping of individual kinesin-1 motors moving along microtubules. These results highlight the potential of AuNPs to replace fluorescent probes in future single-molecule experiments. The newly developed parabolic prism-type TIR microscope is expected to strongly facilitate such approaches in the future.
To study how the motility of kinesin-1 is affected by permanent roadblocks on the microtubule lattice, first, conventional objective-type TIRF microscopy was applied to GFP-labeled motors. An increasing density of roadblocks caused the mean velocity, run length, and dwell time to decrease exponentially. This is explained by (i) the kinesin-1 motors showing extended pausing phases when confronted with a roadblock and (ii) the roadblocks causing a reduction in the free path of the motors. Furthermore, kinesin-1 was found to be highly sensitive to the crowdedness of microtubules as a roadblock decoration as low as 1 % sufficed to significantly reduce the landing rate.
To study events, where kinesin-1 molecules continued their runs after having paused in front of a roadblock, AuNPs were loaded onto the tails of the motors. When observing the kinesin-1 motors with nanometer-precision, it was interestingly found that about 60 % of the runs continued by movements to the side, with the left and right direction being equally likely. This finding suggests that kinesin-1 is able to reach to a neighboring protofilament in order to ensure ongoing transportation. In the absence of roadblocks, individual kinesin-1 motors stepped sideward with a much lower, but non-vanishing probability (0.2 % per step). These findings suggest that processive motor proteins may possess an intrinsic side stepping mechanism, potentially optimized by evolution for their specific intracellular tasks.
|
Page generated in 0.0638 seconds