• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 13
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemical and Microscopic Characterization of INFT-1: an Inverted Formin in C. elegans

Li, Ying 10 May 2011 (has links)
Formins are potent regulators of actin dynamics that can remodel the actin cytoskeleton to control cell shape, cell cytokinesis, and cell morphogenesis. The defining feature of formins is the formin homology 2 (FH2) domain (Paul and Pollard, 2008), which promotes actin filament assembly while processively moving along the polymerizing filament barbed end. INFT-1 is one of six formin family members present in Caenorhabditis elegans (Hunt-Newbury et al., 2007) and is most closely related to vertebrate INF2, an inverted formin with regulatory domains in the C- rather than N-terminus. Nematode INFT-1 contains both formin homology 1 (FH1) and formin homology 2 (FH2) domains. However, it does not share the regulatory N-terminal Diaphanous Inhibitory Domain (DID) domain and C-terminal Diaphanous Autoregulatory Domain (DAD) domain found in mammalian INF2. In contrast to mammalian INF2, the sequence of INFT-1 starts immediately at FH1 domain and C-terminal region of INFT-1 shares little homology with INF2, suggesting that elegans INFT-1 is regulated by other mechanisms. We used fluorescence spectroscopy to determine the effect of INFT-1 FH1FH2 on actin assembly and total internal reflection fluorescence microscopy to investigate how INFT-1 formin homology 1 and formin homology 2 domains (FH1FH2) mediate filament nucleation and elongation. INFT-1 FH1FH2 nucleates actin filament and promote actin assembly. However, INFT-1 FH1FH2 reduces filament barbed-end elongation rates in the absence or presence of profilin. Evidences demonstrated that INFT-1 is non-processive, indicating a unique mechanism of nucleation. INFT-1 nucleation efficiency is similar to the efficiency of Arabidopsis FORMIN1 (AFH1), another non-processive formin. High phosphate affected the assembly activity of INFT-1 FH1FH2 in the absence or presence of profilin. INFT is thus the second example of a non-processive formin member and will allow a more detailed understanding of the mechanistic difference between processive and non-processive formins. / Master of Science
2

Caractérisation de cycC, un nouveau gène impliqué dans le programme de réplication d'Escherichia coli / Characterization of cycC, a new gene involved in the replication program of Escherichia coli

Saïfi, Boubekeur 28 September 2012 (has links)
Dans Escherichia coli la Dam Methyl Transferase (DamMT) est responsable du transfert d’un groupement méthyle sur les adénosines situés au cœur du tétranucléotide GATC; il s’agit donc d’une activité post réplicative. Ainsi, après le passage de la fourche de réplication, le brin d’ADN nouvellement synthétisé est non méthylé – l’ADN est dit hémimethylé. L’ADN reste hémimethylé pendent une brève période - de l’ordre de la minute - avant d’être reméthylé par la DamMT. L’hypothèse de l’implication de la méthylation de l’ADN dans le contrôle général du programme de maintenance de l’ADN repose essentiellement sur cette observation, puisque l’ADN hemimethyle – exception faite de l’origine de réplication et de la région promotrice du gène dnaA – est diagnostique du passage récent de la fourche de réplication. Cette hypothèse, et le criblage phylogénomique qui en a découlé a conduit a l’identification de plusieurs gènes dont les produits sont supposes être impliqués dans la maintenance de l’ADN. yjaG est l’un de ces gènes. Il a été renomme cycC en raison des dérèglements de la progression du cycle cellulaire associés a un mutant nul de ce gène. L’étude effectuée au cours de ma thèse s’attachera à expliquer l’état actuel de nos connaissances sur la protéine CycC et de son implication dans le processus de réplication de l’ADN. Nos résultats montrent que la protéine CycC est impliquée dans la processivité de la réplication lorsqu’il y a un dommage au niveau de l’ADN. CycC spécifie une activité qui conduit à freiner les fourches de réplication, afin de prévenir des avortements des réplisomes. La surexpression de CycC bloque l’initiation de la réplication entre l’ouverture de la molécule d’ADN et le chargement de l’hélicase réplicative. Nous proposons que CycC interagisse avec le complexe réplicative et ralentit les fourches de réplication. Ce ralentissement prévient de nouvelles collisions lorsque les cellules sont dans des conditions de stress-qui cause des arrêts de la réplication. / In Escherichia coli the Dam Methyl Transferase (DamMT) is responsible for the transfer of a methyl group on the adenosine located in tetranucleotide GATC, so this is a post-replicative activity. Thus, after the passage of the replication fork, the newly synthesized DNA strand is unmethylated - DNA is called hemimethylated. DNA remains hemimethylated in a brief period - about a minute - before being reméthylé by DamMT. The hypothesis of the involvement of DNA methylation in the general control of the maintenance program of the DNA is essentially on this observation, since the hemimethylated DNA - except the origin of replication and the region dnaA gene promoter - is diagnostic of the recent passage of the replication fork. This assumption and phylogenomics screening has led to the identification of several genes whose protein are supposed to be involved in the maintenance of DNA. yjaG is one of these genes. It was renamed cycC, the cell cycle progression is deregulated with a null mutant of this gene. The study in my thesis will focus on explaining the current state of our knowledge of the cycC protein and its involvement in the process of DNA replication. Our results show that the CycC protein is involved in the processivity of replication when there is damage into the DNA. CycC specifies an activity that leads to slow replication forks to prevent abortions of replisomes. CycC overexpression blocks the initiation of replication between the open complex of the DNA at oriC and the loading of the replicative helicase. We propose that CycC interacts with the replicative complex and slows replication forks. This slowdown replication prevents new collisions when cells are under stress, causing replication stops.
3

Regulation of Telomerase by DNA and Protein Interactions

Sealey, David Charles Fitzgerald 01 September 2010 (has links)
In most eukaryotes, chromosomes ends are protected by telomeres which are formed by repetitive DNA, specialized binding proteins, and higher order structures. Telomeres become shorter following replication due to the positioning and degradation of terminal RNA primers, as well as resection by nucleases. Extensive telomere shortening over many cell cycles elicits a DNA damage checkpoint that culminates in senescence or, in the absence of tumor suppressor pathways, apoptosis. These effects block the expansion of cells with unstable genomes, but can also precipitate disease in tissues that rely on regeneration for function. In many unicellular eukaryotes and proliferative human cells including cancer cells, telomeres can be maintained by the telomerase reverse transcriptase (TERT) and its associated RNA (TR). The elongation of telomeric DNA by telomerase depends on the telomerase essential N-terminal (TEN) and C terminal reverse transcriptase (RT) domains. We found that human TEN interacted with single-stranded telomeric DNA and restored function, in trans, to an hTERT mutant lacking hTEN. Telomerase required hTEN residues for activity, telomere maintenance, and extension of cellular replicative lifespan. Two inactive hTERT variants bearing mutations in TEN and RT domains, respectively, cooperated to regenerate telomerase activity in vitro. hTEN interacted with several regions of hTERT suggesting that dimerization may occur via TEN-TERT interactions. The in vivo defect of certain hTEN mutants may involve an inability to interact with factors that recruit the enzyme to the telomere and/or stimulate activity. Human homologs of the S. cerevisiae recruitment factor Est1 interacted with telomerase in a species-specific manner. The TPR domain of hEST1A interacted with the N-terminus of hTERT. The TPR domain of ScEst1 was required for telomere length maintenance by telomerase, and, paradoxically, also negatively regulated telomere length. In preliminary experiments, hTERT interacted with hPOT1/hTPP1. This interaction may stimulate the elongation of telomeres by telomerase. The DNA and protein interactions described herein expand our knowledge of telomerase and present new targets for the manipulation of telomerase function in human disease.
4

Regulation of Telomerase by DNA and Protein Interactions

Sealey, David Charles Fitzgerald 01 September 2010 (has links)
In most eukaryotes, chromosomes ends are protected by telomeres which are formed by repetitive DNA, specialized binding proteins, and higher order structures. Telomeres become shorter following replication due to the positioning and degradation of terminal RNA primers, as well as resection by nucleases. Extensive telomere shortening over many cell cycles elicits a DNA damage checkpoint that culminates in senescence or, in the absence of tumor suppressor pathways, apoptosis. These effects block the expansion of cells with unstable genomes, but can also precipitate disease in tissues that rely on regeneration for function. In many unicellular eukaryotes and proliferative human cells including cancer cells, telomeres can be maintained by the telomerase reverse transcriptase (TERT) and its associated RNA (TR). The elongation of telomeric DNA by telomerase depends on the telomerase essential N-terminal (TEN) and C terminal reverse transcriptase (RT) domains. We found that human TEN interacted with single-stranded telomeric DNA and restored function, in trans, to an hTERT mutant lacking hTEN. Telomerase required hTEN residues for activity, telomere maintenance, and extension of cellular replicative lifespan. Two inactive hTERT variants bearing mutations in TEN and RT domains, respectively, cooperated to regenerate telomerase activity in vitro. hTEN interacted with several regions of hTERT suggesting that dimerization may occur via TEN-TERT interactions. The in vivo defect of certain hTEN mutants may involve an inability to interact with factors that recruit the enzyme to the telomere and/or stimulate activity. Human homologs of the S. cerevisiae recruitment factor Est1 interacted with telomerase in a species-specific manner. The TPR domain of hEST1A interacted with the N-terminus of hTERT. The TPR domain of ScEst1 was required for telomere length maintenance by telomerase, and, paradoxically, also negatively regulated telomere length. In preliminary experiments, hTERT interacted with hPOT1/hTPP1. This interaction may stimulate the elongation of telomeres by telomerase. The DNA and protein interactions described herein expand our knowledge of telomerase and present new targets for the manipulation of telomerase function in human disease.
5

Investigating Dynamics Using Three Systems: Cy3 on DNA, ME1 Heterodimers, and DNA Processivity Clamps

January 2015 (has links)
abstract: Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the effects of changing the terminal base pair were explored using temperature-dependent quantum yields. It was discovered, in combination with simulations, that a terminal thymine base has the weakest stacking interactions with the Cy3 dye compared to the other three bases. With ME1 heterodimers, the goal was to see if engineering a salt bridge at the dimerization interface could allow for control over dimerization in a pH-dependent manner. This was performed experimentally by measuring FRET between monomers containing either a Dap or an Asp mutation and comparing FRET efficiency at different pHs. It was demonstrated that the heterodimeric salt bridge would only form in a pH range near neutrality. Finally, with DNA processivity clamps, one aim was to compare the equilibrium dissociation constants, kinetic rate constants, and lifetimes of the closed rings for beta clamp and PCNA. This was done using a variety of biophysical techniques but with three as the main focus: fluorescence correlation spectroscopy, single-molecule experiments, and time-correlated single photon counting measurements. The stability of beta clamp was found to be three orders of magnitude higher when measuring solution stability but only one order of magnitude higher when measuring intrinsic stability, which is a result of salt bridge interactions in the interface of beta clamp. Ongoing work built upon the findings from this project by attempting to disrupt interface stability of different beta clamp mutants by adding salt or changing the pH of the solution. Lingering questions about the dynamics of different areas of the clamps has led to another project for which we have developed a control to demystify some unexpected similarities between beta clamp mutants. With that project, we show that single-labeled and double-labeled samples have similar autocorrelation decays in florescence correlation spectroscopy, allowing us to rule out the dyes themselves as causing fluctuations in the 10-100 microsecond timescale. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2015
6

Characterization and optimization of the in vitro motility assay for fundamental studies of myosin II

Persson, Malin January 2013 (has links)
Myosin II is the molecular motor responsible for muscle contraction. It transforms the chemical energy in ATP into mechanical work while interacting with actin filaments in so called cross-bridge cycles. Myosin II or its proteolytic fragments e.g., heavy meromyosin (HMM) can be adsorbed to moderately hydrophobic surfaces in vitro, while maintaining their ability to translocate actin filaments. This enables observation of myosin-induced actin filament sliding in a microscope. This “in vitro motility assay” (IVMA) is readily used in fundamental studies of actomyosin, including studies of muscle contraction. The degree of correlation of the myosin II function in the IVMA with its function in muscle depends on how the myosin molecules are arranged on the surface. Therefore a multi-technique approach, including total internal reflection spectroscopy, fluorescence interference contrast microscopy and quartz crystal microbalance with dissipation, was applied to characterize the HMM surface configurations. Several configurations with varying distributions were identified depending on the surface property. The most favorable HMM configurations for actin binding were observed on moderately hydrophobic surfaces.   The effects on actomyosin function of different cargo sizes and amount of cargo loaded on an actin filament were also investigated. No difference in sliding velocities could be observed, independent of cargo size indicating that diffusional processive runs of myosin II along an actin filament are not crucial for actomyosin function in muscle. Furthermore, a tool for accurate velocity measurements appropriate for IVMAs at low [MgATP] was developed by utilizing the actin filament capping protein CapZ. These improvements allowed an investigation of the [MgATP]-velocity relationship to study possible processivity in fast skeletal muscle myosin II.  It is shown that the [MgATP]–velocity relationship is well described by a Michaelis-Menten hyperbola.  In addition, statistical cross-bridge modeling showed that the experimental results are in good agreement with recent findings of actomyosin cross-bridge properties, e.g., non-linear cross-bridge elasticity. However, no effect of inter-head cooperativity could be observed.   In conclusion, the described results have contributed to in-depth understanding of the actomyosin cross-bridge cycle in muscle contraction.
7

Exploring the Telomeric Repeat Addition Processivity of Vertebrate Telomerase

January 2010 (has links)
abstract: Telomerase is a special reverse transcriptase that extends the linear chromosome termini in eukaryotes. Telomerase is also a unique ribonucleoprotein complex which is composed of the protein component called Telomerase Reverse Transcriptase (TERT) and a telomerase RNA component (TR). The enzyme from most vertebrate species is able to utilize a short template sequence within TR to synthesize a long stretch of telomeric DNA, an ability termed "repeat addition processivity". By using human telomerase reconstituted both in vitro (Rabbit Reticulocyte Lysate) and in vivo (293FT cells), I have demonstrated that a conserved motif in the reverse transcriptase domain of the telomerase protein is crucial for telomerase repeat addition processivity and rate. Furthermore, I have designed a "template-free" telomerase to show that RNA/DNA duplex binding is a critical step for telomere repeat synthesis. In an attempt to expand the understanding of vertebrate telomerase, I have studied RNA-protein interactions of telomerase from teleost fish. The teleost fish telomerase RNA (TR) is by far the smallest vertebrate TR identified, providing a valuable model for structural research. / Dissertation/Thesis / Ph.D. Biochemistry 2010
8

Modeling the Aggregation of Interacting Neurofilaments in the Axon

Foss, Susan J. 13 August 2015 (has links)
No description available.
9

GH70 dextransucases : Insights on the molecular determinants of dextran molar mass control / Dextransucrases de la famille GH70 : investigations sur les déterminants moléculaires du contrôle de la masse molaire des dextranes produits

Claverie, Marion 20 December 2017 (has links)
Les glucane-saccharases (GS) de la famille GH70 sont des enzymes produites par certaines bactéries lactiques. A partir de saccharose, substrat renouvelable et peu coûteux, elles sont capables de catalyser la synthèse d’α-glucanes, homopolysaccharides dont les propriétés diffèrent suivant la spécificité de l’enzyme (taille, type de liaisons α-osidiques, degrés de branchement). Les glucanes contenant une très grande majorité de liaisons α-(1,6), appelés dextranes, présentent de nombreuses applications industrielles qui dépendent principalement de leur taille. Cependant, la synthèse directe de dextranes de taille contrôlée (de 1 à plusieurs millions de kg/mol) avec une faible polydispersité et en utilisant une seule enzyme n’est encore pas envisageable. En effet, les mécanismes moléculaires mis en jeu pour le contrôle de la taille des polymères produits n’ont encore été que peu explorés. Dans ce contexte, deux GSs ont été sélectionnées. La première, DSR-M synthétise uniquement des dextranes de faible masse molaire (MM) (28 kg/mol) exclusivement composés de liaisons α-(1,6). A contrario, le second modèle, DSR-OK produit le plus long dextrane décrit à ce jour (>109 g/mol). La caractérisation biochimique et structurale ainsi que la construction de mutants ont permis l’exploration du mode d’action de ces deux candidats. Plusieurs structures 3D de DSR-M2 (forme tronquée de DSR-M) - sans ou en complexe avec son substrat ou ses produits (isomaltotetraose) - ont été résolues. C’est la première fois que de tels complexes sont décrits et l’une de ces structures présente le domaine V le plus complet décrit à ce jour. L’analyse de ces structures couplée au suivi cinétique de la synthèse du polymère ont montré que la spécificité de DSR-M pour la synthèse de dextranes courts s’explique par un mode d’élongation distributif dû à la faible affinité de deux poches à sucre de son domaine V envers la chaîne en cours de synthèse. Des analyses RMN (15N1H – HSQC) – jamais réalisées auparavant sur une protéine si grosse – ont également étayé l’importance de la présence de résidus aromatiques dans le domaine catalytique pour la synthèse de dextranes supérieurs à 2 kg/mol. En comparaison, la synthèse de dextranes de haute MM par DSR-OK est principalement due au plus grand nombre de poches à sucre de son domaine V, permettant d’assurer une meilleure interaction avec la chaîne en cours d’élongation. L’implication de ces poches dans la détermination de la taille du dextrane a été montrée pour les deux candidats. Leur fonctionnalité est fortement liée à la présence d’un résidu aromatique de stacking, et leur répartition le long du domaine V a aussi une influence. L’ensemble de ces résultats démontre la coopération du domaine V avec le domaine catalytique pour l’élongation des dextranes, tout en offrant de nouvelles perspectives pour approfondir la compréhension de ce mécanisme. Ils offrent également des stratégies prometteuses pour l’ingénierie d’enzyme de la famille des GH70 pour la modulation de la taille des glucanes. / Glucansucrases (GS) from glycoside hydrolase family 70 (GH70) are -transglucosylases produced by lactic acid bacteria. From sucrose, an economical and abundant agro resource, they catalyze the polymerization of glucosyl residues. Depending on the enzyme specificity, α-glucans vary in terms of size, types of glucosidic bonds and degree of branching and have found multiple industrial applications mainly related to their molar mass (MM). However synthesizing polymers of controlled size with average MM ranging from 1 kg/mol to several millions g/mol and low polydispersity using one single enzyme remains challenging. Indeed, the molecular mechanisms underpinning the control of polymer size have been scarcely explored. To tackle this question, two GSs producing dextran (glucan composed of a majority of α-(1,6) linkages) were selected, and their mode of action explored via biochemical and structural analyses coupled to mutagenesis. The first enzyme selected, called DSR-M synthesizes only low molar mass (LMM) dextran (28 kg/mol) exclusively composed of -(1→6) linkages without any trace of HMM dextran (105 to 108 g/mol). In contrast, DSR-OK (second model), produces the highest MM dextran (>109 g/mol) described to date. Several 3D crystallographic structures of a truncated form of DSR-M (DSR-M2), either free or in complex with its substrate or product (isomaltotetraose) in the domain V or in the active site were solved. Such complexes were never obtained before. Noteworthy, one structure encompassed the most complete domain V reported to date. Analyses of these structures coupled to dextran synthesis monitoring, showed that the LMM dextran specificity of DSR-M2 is explained by a distributive elongation mode due to the weak affinity of its two sugar binding pockets in the domain V which interact with the growing dextran chains and allow the synthesis of dextran longer than 16 kg/mol. 15N1H NMR analyses (HSQC), for the first time performed with such a big protein, further revealed the crucial role of aromatic residues in the catalytic domain for the production of dextran from 2 to 16 kg/mol. In comparison, synthesis of HMM dextran by DSR-OK was shown to be mainly due to the sugar binding pockets of its domain V, ensuring much stronger interactions with growing dextran chains. The role of these pockets was evidenced for both enzymes, their functionality proposed to be linked to the presence of one aromatic stacking residue. Their positioning along domain V relatively to the active site is also important to promote efficient binding. All these findings highlight the cooperation between domain V and the catalytic domain for dextran elongation, offer new perspectives to acquire a deeper knowledge on this interplay and open promising strategies for GH70 enzyme engineering aiming at modulating glucan size.
10

Étude biochimique et biophysique de l’ARN hélicase UPF1 : un moteur moléculaire hautement régulé / Biochemical and biophysical study of the RNA helicase UPF1 : a highly regulated molecular motor

Kanaan, Joanne 09 July 2018 (has links)
UPF1 (Up-Frameshift 1) est une hélicase multifonctionnelle conservée chez tous les eucaryotes. Elle est essentielle à la voie de surveillance du NMD (Nonsense Mediated mRNA Decay), qui dégrade des ARNm portant un codon stop prématuré. UPF1 est l’archétype d’une famille d’hélicases qui partagent des corps similaires mais sont impliquées dans des voies cellulaires variées. Cependant, les relations structure-fonction et les caractéristiques biophysiques intrinsèques de ces moteurs moléculaires restent à ce jour peu connues. In vitro, le coeur hélicase d’UPF1 est hautement processif, il traverse des milliers de bases sur l’ARN ou l’ADN et déroule des doubles brins. Dans ce travail, nous avons cherché les facteurs clés régissant cette remarquable processivité en combinant des techniques de biochimie et de biophysique. En particulier, nous avons utilisé des pinces magnétiques pour étudier en temps réel des hélicases à l’échelle de la molécule unique. Contrairement à UPF1, l’hélicase IGHMBP2 de la famille UPF1-like n’est pas processive ; la processivité n’est donc pas un trait conservé au sein de la famille. Grâce à une étude fine de la structure 3D des deux hélicases, nous avons conçu divers mutants que nous avons utilisés pour identifier les éléments structuraux qui modulent la processivité. Notre approche révèle qu’UPF1 a une prise très ferme sur les acides nucléiques, garantissant de longs temps de résidence et d’action qui dictent sa haute processivité. Grâce à la variété de comportements des mutants, nous avons construit un modèle mécanistique expliquant le lien entre énergie d’interaction et processivité. Nous démontrons aussi que la processivité d’UPF1 est requise pour un processus de NMD efficace in vivo. Nous avons utilisé les mêmes outils biochimiques et biophysiques pour étudier une isoforme naturelle d’UPF1 humaine se déplaçant plus vite que l’isoforme majeure, et pour comparer la régulation d’UPF1 humaine et de levure par leurs domaines flanquants. Nous avons également caractérisé l'interaction d’UPF1 de levure avec de nouveaux partenaires. Nos travaux montrent comment la combinaison d'outils biochimiques, biophysiques, structuraux etin vivo offre des aperçus inattendus quant au mode de fonctionnement des moteurs moléculaires. / UPF1 (Up-Frameshift 1) is a multifunctional helicase that unwinds nucleic acids and is conserved throughout the eukaryote kingdom. UPF1 is required for the Nonsense Mediated mRNA Decay (NMD) surveillance pathway, which degrades mRNAs carrying premature termination codons, among other substrates. UPF1 is the archetype of a family of 11 helicases sharing similar cores but involved in various cellular pathways. However, the structure-function relationship and intrinsic biophysical properties of these molecular engines remain poorly described. In vitro, the UPF1 helicase core is highly processive, it travels along thousands of RNA or DNA bases and unwinds double-strands. In this work, we looked for key factors governing this remarkable processivity. We combined biochemical and biophysical techniques. In particular, we used magnetic tweezers to study helicases in real time at a single molecule scale. In contrast to UPF1, the related IGHMBP2 is not processive, thus processivity is not a shared family trait. Based on the 3D structures of both proteins, we designed various mutants and used them to identify structural elements that modulate processivity. Our approach reveals that UPF1 has a very firm grip on nucleic acids, guaranteeing long binding lifetimes and action times that dictate its high processivity. Thanks to the variety in mutant behaviors, we built a novel mechanistic model linking binding energy to processivity. Furthermore, we show that UPF1 processivity is required for an efficient NMD in vivo. In addition, we used the same biochemical and biophysical tools to investigate a natural human UPF1 isoform moving faster than the major isoform, and to compare the regulation of human andyeast UPF1 by their flanking domains. We also characterized the interaction of yeast UPF1 with new NMD partners. Our work shows how a combination of biochemical, biophysical, structural and in vivo tools can offer unexpected insights into the operating mode of molecular motors.

Page generated in 0.0745 seconds