Spelling suggestions: "subject:"andcontext 1earning"" "subject:"andcontext _learning""
11 |
Towards Novelty-Resilient AI: Learning in the Open WorldTrevor A Bonjour (18423153) 22 April 2024 (has links)
<p dir="ltr">Current artificial intelligence (AI) systems are proficient at tasks in a closed-world setting where the rules are often rigid. However, in real-world applications, the environment is usually open and dynamic. In this work, we investigate the effects of such dynamic environments on AI systems and develop ways to mitigate those effects. Central to our exploration is the concept of \textit{novelties}. Novelties encompass structural changes, unanticipated events, and environmental shifts that can confound traditional AI systems. We categorize novelties based on their representation, anticipation, and impact on agents, laying the groundwork for systematic detection and adaptation strategies. We explore novelties in the context of stochastic games. Decision-making in stochastic games exercises many aspects of the same reasoning capabilities needed by AI agents acting in the real world. A multi-agent stochastic game allows for infinitely many ways to introduce novelty. We propose an extension of the deep reinforcement learning (DRL) paradigm to develop agents that can detect and adapt to novelties in these environments. To address the sample efficiency challenge in DRL, we introduce a hybrid approach that combines fixed-policy methods with traditional DRL techniques, offering enhanced performance in complex decision-making tasks. We present a novel method for detecting anticipated novelties in multi-agent games, leveraging information theory to discern patterns indicative of collusion among players. Finally, we introduce DABLER, a pioneering deep reinforcement learning architecture that dynamically adapts to changing environmental conditions through broad learning approaches and environment recognition. Our findings underscore the importance of developing AI systems equipped to navigate the uncertainties of the open world, offering promising pathways for advancing AI research and application in real-world settings.</p>
|
12 |
Multimodal Data Management in Open-world EnvironmentK M A Solaiman (16678431) 02 August 2023 (has links)
<p>The availability of abundant multimodal data, including textual, visual, and sensor-based information, holds the potential to improve decision-making in diverse domains. Extracting data-driven decision-making information from heterogeneous and changing datasets in real-world data-centric applications requires achieving complementary functionalities of multimodal data integration, knowledge extraction and mining, situationally-aware data recommendation to different users, and uncertainty management in the open-world setting. To achieve a system that encompasses all of these functionalities, several challenges need to be effectively addressed: (1) How to represent and analyze heterogeneous source contents and application context for multimodal data recommendation? (2) How to predict and fulfill current and future needs as new information streams in without user intervention? (3) How to integrate disconnected data sources and learn relevant information to specific mission needs? (4) How to scale from processing petabytes of data to exabytes? (5) How to deal with uncertainties in open-world that stem from changes in data sources and user requirements?</p>
<p><br></p>
<p>This dissertation tackles these challenges by proposing novel frameworks, learning-based data integration and retrieval models, and algorithms to empower decision-makers to extract valuable insights from diverse multimodal data sources. The contributions of this dissertation can be summarized as follows: (1) We developed SKOD, a novel multimodal knowledge querying framework that overcomes the data representation, scalability, and data completeness issues while utilizing streaming brokers and RDBMS capabilities with entity-centric semantic features as an effective representation of content and context. Additionally, as part of the framework, a novel text attribute recognition model called HART was developed, which leveraged language models and syntactic properties of large unstructured texts. (2) In the SKOD framework, we incrementally proposed three different approaches for data integration of the disconnected sources from their semantic features to build a common knowledge base with the user information need: (i) EARS: A mediator approach using schema mapping of the semantic features and SQL joins was proposed to address scalability challenges in data integration; (ii) FemmIR: A data integration approach for more susceptible and flexible applications, that utilizes neural network-based graph matching techniques to learn coordinated graph representations of the data. It introduces a novel graph creation approach from the features and a novel similarity metric among data sources; (iii) WeSJem: This approach allows zero-shot similarity matching and data discovery by using contrastive learning<br>
to embed data samples and query examples in a high-dimensional space using features as a novel source of supervision instead of relevance labels. (3) Finally, to manage uncertainties in multimodal data management for open-world environments, we characterized novelties in multimodal information retrieval based on data drift. Moreover, we proposed a novelty detection and adaptation technique as an augmentation to WeSJem.<br>
</p>
<p>The effectiveness of the proposed frameworks, models, and algorithms was demonstrated<br>
through real-world system prototypes that solved open problems requiring large-scale human<br>
endeavors and computational resources. Specifically, these prototypes assisted law enforcement officers in automating investigations and finding missing persons.<br>
</p>
|
13 |
EXPLORING GRAPH NEURAL NETWORKS FOR CLUSTERING AND CLASSIFICATIONFattah Muhammad Tahabi (14160375) 03 February 2023 (has links)
<p><strong>Graph Neural Networks</strong> (GNNs) have become excessively popular and prominent deep learning techniques to analyze structural graph data for their ability to solve complex real-world problems. Because graphs provide an efficient approach to contriving abstract hypothetical concepts, modern research overcomes the limitations of classical graph theory, requiring prior knowledge of the graph structure before employing traditional algorithms. GNNs, an impressive framework for representation learning of graphs, have already produced many state-of-the-art techniques to solve node classification, link prediction, and graph classification tasks. GNNs can learn meaningful representations of graphs incorporating topological structure, node attributes, and neighborhood aggregation to solve supervised, semi-supervised, and unsupervised graph-based problems. In this study, the usefulness of GNNs has been analyzed primarily from two aspects - <strong>clustering and classification</strong>. We focus on these two techniques, as they are the most popular strategies in data mining to discern collected data and employ predictive analysis.</p>
|
Page generated in 0.0825 seconds