Spelling suggestions: "subject:"constitu alloying"" "subject:"constitu lloying""
1 |
Development of an In-Situ Alloyed Microstructure in Laser Additive ManufacturingAhmed, Farheen Fathima January 2020 (has links)
Additive Manufacturing (AM) processes are gaining prominence in industry as they can build parts to near-net-shape with minimal postprocessing. Metal laser AM techniques, such as Selective Laser Melting (SLM), offer rapid cooling rates on the order of 10^5-10^6 K/s. This is due to a highly-focused laser heating a microscopic volume in an otherwise lower-temperature environment. Hence, metal laser AM can manufacture novel, out-of-equilibrium microstructures that cannot be produced in near-net-shapes with other processes. It is desirable to optimize feedstocks for metal AM processes to leverage their advantages. One option of optimizing feedstocks is through in-situ alloying, or by using elemental powders. Elemental powders homogenize over the course of multiple laser passes, or intrinsic heat treatments. However, rapid cooling rates prevent the homogenization of a layer when first printed. To investigate the homogenization process, this thesis used synchrotron X-ray Diffraction (sXRD) to track the phase transformations during the SLM of a 14-layer single wall (single-hatch, multilayered) of Ti-1Al-8V-5Fe (Ti-185) from elemental Ti, Fe and an alloyed AlV powders, capturing frames at 250 Hz. Infrared imaging was performed simultaneously on the surface at 1603.5 Hz to observe the temperature changes at the surface. Post-mortem electron microscopy was performed on cross-sections of the wall perpendicular to the scanning direction to observe the changes in the microstructure with respect to the build direction. Specifically, Electron Dispersive X-Ray Spectroscopy and Electron Backscatter Diffraction were performed to observe the alloying elemental distribution and microstructure of the wall with respect to the build direction. The research performed found that in the melted zone, phase transformation times below 50 ms yielded a partially-alloyed microstructure, with regions concentrated and dilute in alloying elements. Partial mixing was diffusion-induced by laser beam heat and the exothermic heat of mixing of Ti-185 from its constituent elements. Further diffusion during reheating cycles yielded an alloyed microstructure. / Thesis / Master of Applied Science (MASc)
|
2 |
Élaboration in situ d’alliages de titane et de structures architecturées par fabrication additive : application aux dispositifs médicaux implantables / In situ titanium alloy and lattice structures processing by additive manufacturing : application to implantable medical devicesFischer, Marie 20 December 2017 (has links)
La problématique initiale part du constat que les échecs d’implants sont souvent causés par une inadéquation entre les propriétés élastiques de l’os et celles de l’implant. Aujourd’hui, ce problème de biocompatibilité mécanique suscite un intérêt croissant et a conduit au développement d’alliages de titane β-métastables qui possèdent un module d’élasticité faible, moitié moindre que celui de l’alliage Ti-6Al-4V classiquement utilisé dans les applications d’implantologie. De plus, les structures architecturées ou treillis font, elles aussi, l’objet d’intenses recherches dans le but de réduire le module d’élasticité et de maximiser la résistance. Leur mise en forme, avec une maîtrise précise de l’architecture, est possible grâce à la fabrication additive et les nombreuses possibilités qu’elle offre : liberté de design, gain matière, pièces complexes, customisation de masse... Ce travail de thèse porte sur la mise en œuvre de l’alliage de titane à bas module d’élasticité Ti-26Nb(%at.) par la technologie de fusion laser sur lit de poudres. Une stratégie d’élaboration in situ de ces alliages à partir de poudres élémentaires de Ti et de Nb est explorée, à la fois pour permettre d’éventuels ajustements de composition, et pour pallier au manque de disponibilité des alliages de titane sous forme de poudres. La démarche est réalisée avec deux morphologies de poudre, irrégulière et sphérique. Les effets des nombreux paramètres de ce procédé (puissance du laser, vitesse et stratégie de balayage...) sur l’homogénéité et la porosité des pièces élaborées sont quantifiés. Un alliage homogène peut être obtenu sous réserve de l’utilisation d’une densité d’énergie adaptée et d’une granulométrie de poudre tenant compte des températures de fusion respectives des éléments. La caractérisation de la microstructure met en évidence une texture marquée, dépendante de la stratégie de balayage. Les pièces élaborées présentent un bas module d’élasticité associé à une résistance mécanique élevée, avec une déformation élastique favorable par rapport à un alliage de référence coulé. Par ailleurs, un algorithme d’optimisation est développé et permet de contrôler les propriétés mécaniques d’une structure architecturée à partir de ses paramètres géométriques (rayon, longueur et orientation des poutres). La combinaison de cet alliage de titane à bas module d’élasticité et d’une structure architecturée développée à partir ce cet algorithme a été appliqué à une prothèse totale de hanche, qui a fait l’objet de simulations par éléments finis. L’évaluation du phénomène de stress-shielding montre que, comparativement à un modèle massif plus rigide, ce type de prothèse permet de réduire de façon significative la déviation des contraintes. En se rapprochant du modèle dit physiologique, cette prothèse peut être qualifiée de « biomimétique » sur le plan du comportement mécanique / The initial problematic arises from the fact that implant failure is often caused by a mismatch between the elastic properties of the bone and those of the implant. Nowadays, an increasing interest is given to this mechanical biocompatibility and led to the development of β-metastable titanium alloys that possess low Young’s modulus, about half that of the conventionally used Ti-6Al-4V alloy. Moreover, lattice structures are currently being the subject of many investigations with the aim of achieving low Young’s modulus and high strength. Their fabrication, with accurate control over the architecture, is made possible thanks to additive manufacturing processes and the several possibilities they offer: design freedom, reduced material usage rate, complex shapes, mass customisation... The present work focuses on the implementation of low modulus titanium alloy Ti-26Nb(at.%) by the means of selective laser melting. An in situ elaboration strategy, based on a mixture of elemental powders, is explored in order to allow potential composition adjustments and to overcome the unavailability of titanium alloy powders. The approach is carried out using two distinct powder morphologies, spherical and irregular. The effects of the numerous parameters of the process (laser power, speed, scanning strategy...) on homogeneity and porosity of the manufactured parts is quantified. A homogeneous alloy can be obtained subject to the use of suitable energy density levels and powder size distributions that take into account the respective fusion temperatures of both elements. Microstructure characterisation highlights a pronounced texture resulting from the scanning strategy. The elaborated samples display a low Young’s modulus associated with a high strength, and hence a favourable strength to elastic modulus ratio compared to the reference cast alloy. Furthermore, an optimization algorithm is developed and allows controlling the mechanical properties of a lattice structure with its geometrical parameters (radius, length and orientation of struts). The combined use of this low Young’s modulus titanium alloy with a lattice structure developed through this algorithm was applied to the design of a total hip prosthesis that was subjected to finite element simulations. Stress-shielding evaluation shows that, compared to a solid design, this kind of prosthesis permits to reduce stress-shielding significantly. By getting closer to a physiological model, this prosthesis can be qualified as “biomimetic” in terms of mechanical behaviour
|
Page generated in 0.0388 seconds