• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase synchronization of chaotic systems : from theory to experimental applications

Rosenblum, Michael January 2003 (has links)
In einem klassischen Kontext bedeutet Synchronisierung die Anpassung der Rhythmen von selbst-erregten periodischen Oszillatoren aufgrund ihrer schwachen Wechselwirkung. <br /> Der Begriff der Synchronisierung geht auf den berühmten niederläandischen Wissenschaftler Christiaan Huygens im 17. Jahrhundert zurück, der über seine Beobachtungen mit Pendeluhren berichtete. Wenn zwei solche Uhren auf der selben Unterlage plaziert wurden, schwangen ihre Pendel in perfekter Übereinstimmung. <br /> Mathematisch bedeutet das, daß infolge der Kopplung, die Uhren mit gleichen Frequenzen und engverwandten Phasen zu oszillieren begannen. <br /> Als wahrscheinlich ältester beobachteter nichtlinearer Effekt wurde die Synchronisierung erst nach den Arbeiten von E. V. Appleton und B. Van der Pol gegen 1920 verstanden, die die Synchronisierung in Triodengeneratoren systematisch untersucht haben. Seitdem wurde die Theorie gut entwickelt, und hat viele Anwendungen gefunden. <br /> <br /> Heutzutage weiss man, dass bestimmte, sogar ziemlich einfache, Systeme, ein chaotisches Verhalten ausüben können. Dies bedeutet, dass ihre Rhythmen unregelmäßig sind und nicht durch nur eine einzige Frequenz charakterisiert werden können. <br /> Wie in der Habilitationsarbeit gezeigt wurde, kann man jedoch den Begriff der Phase und damit auch der Synchronisierung auf chaotische Systeme ausweiten. Wegen ihrer sehr schwachen Wechselwirkung treten Beziehungen zwischen den Phasen und den gemittelten Frequenzen auf und führen damit zur Übereinstimmung der immer noch unregelmäßigen Rhythmen. Dieser Effekt, sogenannter Phasensynchronisierung, konnte später in Laborexperimenten anderer wissenschaftlicher Gruppen bestätigt werden. <br /> <br /> Das Verständnis der Synchronisierung unregelmäßiger Oszillatoren erlaubte es uns, wichtige Probleme der Datenanalyse zu untersuchen. <br /> Ein Hauptbeispiel ist das Problem der Identifikation schwacher Wechselwirkungen zwischen Systemen, die nur eine passive Messung erlauben. Diese Situation trifft häufig in lebenden Systemen auf, wo Synchronisierungsphänomene auf jedem Niveau erscheinen - auf der Ebene von Zellen bis hin zu makroskopischen physiologischen Systemen; in normalen Zuständen und auch in Zuständen ernster Pathologie. <br /> Mit unseren Methoden konnten wir eine Anpassung in den Rhythmen von Herz-Kreislauf und Atmungssystem in Menschen feststellen, wobei der Grad ihrer Interaktion mit der Reifung zunimmt. Weiterhin haben wir unsere Algorithmen benutzt, um die Gehirnaktivität von an Parkinson Erkrankten zu analysieren. Die Ergebnisse dieser Kollaboration mit Neurowissenschaftlern zeigen, dass sich verschiedene Gehirnbereiche genau vor Beginn des pathologischen Zitterns synchronisieren. Außerdem gelang es uns, die für das Zittern verantwortliche Gehirnregion zu lokalisieren. / In a classical context, synchronization means adjustment of rhythms of self-sustained periodic oscillators due to their weak interaction. The history of synchronization goes back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on his observation of synchronization of pendulum clocks: when two such clocks were put on a common support, their pendula moved in a perfect agreement. In rigorous terms, it means that due to coupling the clocks started to oscillate with identical frequencies and tightly related phases. Being, probably, the oldest scientifically studied nonlinear effect, synchronization was understood only in 1920-ies when E. V. Appleton and B. Van der Pol systematically - theoretically and experimentally - studied synchronization of triode generators. Since that the theory was well developed and found many applications. <br /> Nowadays it is well-known that certain systems, even rather simple ones, can exhibit chaotic behaviour. It means that their rhythms are irregular, and cannot be characterized only by one frequency. However, as is shown in the Habilitation work, one can extend the notion of phase for systems of this class as well and observe their synchronization, i.e., agreement of their (still irregular!) rhythms: due to very weak interaction there appear relations between the phases and average frequencies. This effect, called phase synchronization, was later confirmed in laboratory experiments of other scientific groups. <br /> Understanding of synchronization of irregular oscillators allowed us to address important problem of data analysis: how to reveal weak interaction between the systems if we cannot influence them, but can only passively observe, measuring some signals. This situation is very often encountered in biology, where synchronization phenomena appear on every level - from cells to macroscopic physiological systems; in normal states as well as in severe pathologies. With our methods we found that cardiovascular and respiratory systems in humans can adjust their rhythms; the strength of their interaction increases with maturation. Next, we used our algorithms to analyse brain activity of Parkinsonian patients. The results of this collaborative work with neuroscientists show that different brain areas synchronize just before the onset of pathological tremor. Morevoever, we succeeded in localization of brain areas responsible for tremor generation.
2

Stroboscopic point concentration in hyper-chaotic system

Jan, Heng-tai 01 July 2010 (has links)
The detection for phase locking in a forced oscillator with dual attractors and ill-defined phase structure is hard until a quantitative approach was constructed for detecting phase locking via stroboscopic method. We study the route to weak phase locking in a chaotic system ¡§Chua oscillator¡¨ with complex attractor structure by analyzing the stroboscopic points. The onset of weak phase locking detected by using this statistical approach and the critical coupling strength calculated by conditional Lyapunov exponent are matched well. Detailed structure of phase locking intensity is described by the Arnold tongue diagram. Moreover, we apply this approach on three hyper-chaotic systems with multi-scroll attractor, including hyper-chaotic Rössler system, hyper-chaotic Lorenz system, and modified MCK oscillator. The weak phase locking between hyper-chaotic system and a periodic or a chaotic driving force is observable following the condition of stroboscopic point concentration.
3

Brain Rhythm Fluctuations: Envelope-Phase Modeling and Phase Synchronization

Powanwe, Arthur Sadrack 12 May 2021 (has links)
Fast neural oscillations known as beta (12-30Hz) and gamma (30-100Hz) rhythms are recorded across several brain areas of various species. They have been linked to diverse functions like perception, attention, cognition, or interareal brain communication. The majority of the tasks performed by the brain involves communication between brain areas. To efficiently perform communication, mathematical models of brain activity require representing neural oscillations as sustained and coherent rhythms. However, some recordings show that fast oscillations are not sustained or coherent. Rather they are noisy and appear as short and random epochs of sustained activity called bursts. Therefore, modeling such noisy oscillations and investigating their ability to show interareal coherence and phase synchronization are important questions that need to be addressed. In this thesis, we propose theoretical models of noisy oscillations in the gamma and beta bands with the same properties as those observed in in \textit{vivo}. Such models should exhibit dynamic and statistical features of the data and support dynamic phase synchronization. We consider networks composed of excitatory and inhibitory populations. Noise is the result of the finite size effect of the system or the synaptic inputs. The associated dynamics of the Local Field Potentials (LFPs) are modeled as linear equations, sustained by additive and/or multiplicative noises. Such oscillatory LFPs are also known as noise-induced or quasi-cycles oscillations. The LFPs are better described using the envelope-phase representation. In this framework, a burst is defined as an epoch during which the envelope magnitude exceeds a given threshold. Fortunately, to the lowest order, the envelope dynamics are uncoupled from the phase dynamics for both additive and multiplicative noises. For additive noise, we derive the mean burst duration via a mean first passage time approach and uncover an optimal range of parameters for healthy rhythms. Multiplicative noise is shown theoretically to further synchronize neural activities and better explain pathologies with an excess of neural synchronization. We used the stochastic averaging method (SAM) as a theoretical tool to derive the envelope-phase equations. The SAM is extended to extract the envelope-phase equations of two coupled brain areas. The goal is to tackle the question of phase synchronization of noise-induced oscillations with application to interareal brain communication. The results show that noise and propagation delay are essential ingredients for dynamic phase synchronization of quasi-cycles. This suggests that the noisy oscillations recorded in \textit{vivo} and modeled here as quasi-cycles are good candidates for such neural communication. We further extend the use of the SAM to describe several coupled networks subject to white and colored noises across the Hopf bifurcation ie in both quasi-cycle and limit cycle regimes. This allows the description of multiple brain areas in the envelope-phase framework. The SAM constitutes an appropriate and flexible theoretical tool to describe a large class of stochastic oscillatory phenomena through the envelope-phase framework.
4

Generating Surrogates from Recurrences

Thiel, Marco, Romano, Maria Carmen, Kurths, Jürgen, Rolfs, Martin, Kliegl, Reinhold January 2006 (has links)
In this paper we present an approach to recover the dynamics from recurrences of a system and then generate (multivariate) twin surrogate (TS) trajectories. In contrast to other approaches, such as the linear-like surrogates, this technique produces surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system visiting the attractor in a different way. We show that these surrogates are well suited to test for complex synchronization, which makes it possible to systematically assess the reliability of synchronization analyses. We then apply the TS to study binocular fixational movements and find strong indications that the fixational movements of the left and right eye are phase synchronized. This result indicates that there might be one centre only in the brain that produces the fixational movements in both eyes or a close link between two centres.
5

HUMAN CARDIOVASCULAR RESPONSES TO SIMULATED PARTIAL GRAVITY AND A SHORT HYPERGRAVITY EXPOSURE

Zhang, Qingguang 01 January 2015 (has links)
Orthostatic intolerance (OI), i.e., the inability to maintain stable arterial pressure during upright posture, is a major problem for astronauts after spaceflight. Therefore, one important goal of spaceflight-related research is the development of countermeasures to prevent post flight OI. Given the rarity and expense of spaceflight, countermeasure development requires ground-based simulations of partial gravity to induce appropriate orthostatic effects on the human body, and to test the efficacy of potential countermeasures. To test the efficacy of upright lower body positive pressure (LBPP) as a model for simulating cardiovascular responses to lunar and Martian gravities on Earth, cardiovascular responses to upright LBPP were compared with those of head-up tilt (HUT), a well-accepted simulation of partial gravity, in both ambulatory and cardiovascularly deconditioned subjects. Results indicate that upright LBPP and HUT induced similar changes in cardiovascular regulation, supporting the use of upright LBPP as a potential model for simulating cardiovascular responses to standing and moving in lunar and Martian gravities. To test the efficacy of a short exposure to artificial gravity (AG) as a countermeasure to spaceflight-induced OI, orthostatic tolerance limits (OTL) and cardiovascular responses to orthostatic stress were tested in cardiovascularly deconditioned subjects, using combined 70º head-up tilt and progressively increased lower body negative pressure, once following 90 minutes AG exposure and once following 90 minutes of -6º head-down bed rest (HDBR). Results indicate that a short AG exposure increased OTL of cardiovascularly deconditioned subjects, with increased baroreflex and sympathetic responsiveness, compared to those measured after HDBR exposure. To gain more insight into mechanisms of causal connectivity in cardiovascular and cardiorespiratory oscillations during orthostatic challenge in both ambulatory and cardiovascularly deconditioned subjects, couplings among R-R intervals (RRI), systolic blood pressure (SBP) and respiratory oscillations in response to graded HUT and dehydration were studied using a phase synchronization approach. Results indicate that increasing orthostatic stress disassociated interactions among RRI, SBP and respiration, and that dehydration exacerbated the disconnection. The loss of causality from SBP to RRI following dehydration suggests that dehydration also reduced involvement of baroreflex regulation, which may contribute to the increased occurrence of OI.
6

Digital Controlled Multi-phase Buck Converter with Accurate Voltage and Current Control

January 2017 (has links)
abstract: A 4-phase, quasi-current-mode hysteretic buck converter with digital frequency synchronization, online comparator offset-calibration and digital current sharing control is presented. The switching frequency of the hysteretic converter is digitally synchronized to the input clock reference with less than ±1.5% error in the switching frequency range of 3-9.5MHz. The online offset calibration cancels the input-referred offset of the hysteretic comparator and enables ±1.1% voltage regulation accuracy. Maximum current-sharing error of ±3.6% is achieved by a duty-cycle-calibrated delay line based PWM generator, without affecting the phase synchronization timing sequence. In light load conditions, individual converter phases can be disabled, and the final stage power converter output stage is segmented for high efficiency. The DC-DC converter achieves 93% peak efficiency for Vi = 2V and Vo = 1.6V. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
7

Comparison of phase synchronization measures for identifying stimulus- induced functional connectivity in human magnetoencephalographic and simulated data / 位相同期解析に基づく機能的結合指標の検出能比較-脳磁図データおよびシミュレーションデータを用いた検討

Yoshinaga, Kenji 24 November 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22828号 / 医博第4667号 / 新制||医||1047(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 村井 俊哉, 教授 古川 壽亮, 教授 高橋 淳 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
8

A study on the dynamical role of EEG phase for speech recognition / 音声認識における脳波位相のダイナミクスとその役割に関する研究

Onojima, Takayuki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21213号 / 情博第666号 / 新制||情||115(附属図書館) / 京都大学大学院情報学研究科先端数理科学専攻 / (主査)講師 青柳 富誌生, 教授 西村 直志, 准教授 田口 智清, 講師 水原 啓暁 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
9

On the synchronization of two metronomes and their related dynamics

Carranza López, José Camilo [UNESP] 05 June 2017 (has links)
Submitted by CAMILO CARRANZA (carranzacamilo@gmail.com) on 2017-07-25T19:58:22Z No. of bitstreams: 1 Camilo_PhD_Thesis.pdf: 11035322 bytes, checksum: efe400c07b13cabff41e927078789c59 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-07-26T18:31:30Z (GMT) No. of bitstreams: 1 carranzalopez_jc_dr_ilha.pdf: 11035322 bytes, checksum: efe400c07b13cabff41e927078789c59 (MD5) / Made available in DSpace on 2017-07-26T18:31:30Z (GMT). No. of bitstreams: 1 carranzalopez_jc_dr_ilha.pdf: 11035322 bytes, checksum: efe400c07b13cabff41e927078789c59 (MD5) Previous issue date: 2017-06-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese são investigadas, teórica e experimentalmente, a sincronização em fase e a sincronização em anti-fase de dois metrônomos oscilando sobre uma base móvel, a partir de um modelo aqui proposto. Uma descrição do funcionamento do mecanismo de escapamento dos metrônomos é feita, junto a um estudo da relação entre este e o oscilador de van der Pol. Também uma aproximação experimental do valor do amortecimento do metrônomo é fornecida. A frequência instantânea das respostas, numérica e experimental, do sistema é usada na analise. A diferença de outros trabalhos prévios, os dados experimentais têm sido adquiridos usando vídeos dos experimentos e extraídos com ajuda do software Tracker. Para investigar a relação entre as condições iniciais do sistema e seu estado final de sincronização, foram usados mapas bidimensionais chamados ‘basins of attraction’. A relação entre o modelo proposto e um modelo prévio também é mostrada. Encontrou-se que os parâmetros relevantes em relação a ambos os tipos de sincronização são a razão entre a massa do metrônomo e a massa da base, e o amortecimento do sistema. Tem-se encontrado, tanto experimental quanto teoricamente, que a frequência de oscilação dos metrônomos aumenta quando o sistema sincroniza-se em fase, e se mantém a mesma de um metrônomo isolado quando o sistema sincroniza-se em anti-fase. A partir de simulações numéricas encontrou-se que, em geral, incrementos no amortecimento do sistema levam ao sistema se sincronizar mais em fase do que em anti-fase. Adicionalmente se encontrou que, para dado valor de amortecimento, diminuir a massa da base leva a uma situação em que a sincronização em anti-fase é mais comum do que a sincronização em fase. / This thesis concerns a theoretical and experimental investigation into the synchronization of two coupled metronomes. A simplified model is proposed to study in-phase and anti-phase synchronization of two metronomes oscillating on a mobile base. A description of the escapement mechanism driving metronomes is given and its relationship with the van der Pol oscillator is discussed. Also an experimental value for the damping in the metronome is determined. The instantaneous frequency of the responses from both numerical and experimental data is used in the analysis. Unlike previous studies, measurements are made using videos and the time domain responses of the metronomes extracted by means of tracker software. Basins of attraction are used to investigate the relationship between initial conditions, parameters and both final synchronization states. The relationship between the model and a previous pendulum model is also shown. The key parameters concerning both kind of synchronization have been found to be the mass ratio between the metronome mass and the base mass, and the damping in the system. It has been shown, both theoretically and experimentally, that the frequency of oscillation of the metronomes increases when the system reaches in-phase synchronization, and is the same as an isolated metronome when the system synchronizes in anti-phase. From numerical simulations, it has been found that, in general, increasing damping leads the system to synchronize more in-phase than in anti-phase. It has also been found that, for a given damping value, decreasing the mass of the base results in the situation where anti-phase synchronization is more common than in-phase synchronization.
10

The study of chaotic phase synchronization of nonlinear electronic circuits and solid-state laser systems

Lin, Chien-Hui 12 July 2012 (has links)
We study the chaotic phase synchronization (CPS) between the external periodically driving signals and the nonlinear dynamic systems. The periodical signal was applied to drive the Chua circuit system with two-scroll attractor and the four-scroll attractor circuit system. The phase synchronization between the outputs of these two circuit systems and the driving signals were investigated. Besides, the chaotic phase synchronization of the periodically pump-modulated microchip Nd:YVO4 laser and the microchip Nd:YVO4 laser with optical feedback were also examined in this study. Phase synchronization (PS) transition of these periodically driven nonlinear dynamic systems exhibited via the stroboscopic technique and recurrence probability. The recurrence probability and correlation probability of recurrence were utilized to estimate the degree of PS. In this thesis, the degree of PS was studied by taking into account the amplitude and frequency of the external driving signal. The experimental compatible numerical simulations also reflected the fact that the Arnold tongues are experimentally and numerically exhibited in the periodically driven nonlinear dynamic systems.

Page generated in 0.1092 seconds