• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 5
  • 1
  • Tagged with
  • 79
  • 79
  • 44
  • 42
  • 27
  • 19
  • 18
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Guided vehicle systems: a simulation analysis

Dutt, Subir 12 January 2010 (has links)
see document / Master of Science
32

A Unified Tool For Adaptive Collocation Techniques Applied to Solving Optimal Control Problems

Kelly, Bethany 01 January 2022 (has links) (PDF)
In this work, a user-friendly MATLAB tool is introduced to solve nonlinear optimal control problems by applying collocation techniques using Coupled Radial Basis Functions (CRBFs). CRBFs are a new class of Radial Basis Functions combined with a conical spline r^5, which provides the advantage of insensitivity to the shape parameter while maintaining accuracy and robustness. To solve optimal control problems, software tools are often employed to implement numerical methods and apply advanced techniques to solving differential equations. Although several commercial software tools exist for solving optimal control problems, such as ICLOCS2, GPOPS, and DIDO, there are no options available that utilize adaptive collocation with CRBFs. A unified MATLAB tool named Radial Optimal Control Software (ROCS) is introduced and not only implements the CRBF method, but also enables any user, from professionals to students, to solve nonlinear optimal control problems through a user-friendly interface. The tool accepts user input for boundary conditions, necessary conditions, and the governing equations of motion. The two-point boundary value problem (TPBVP) is approximated through collocation using CRBFs, and the resulting nonlinear algebraic equations (NAEs) are solved with a MATLAB solver. The tool's usefulness and application are demonstrated by solving classical nonlinear optimal control problems and comparing the results with the solutions found in the literature. Compared to classical numerical method techniques, the present tool is shown to solve optimal control problems more efficiently for the same level of accuracy. By introducing this unified MATLAB tool to solving nonlinear optimal control problems, the intent is to enable professionals and students to solve nonlinear optimal control problems, e.g., in astrodynamics and space-flight mechanics, without the need for extensive manipulation of code in existing software tools and without extensive knowledge of applying numerical solvers.
33

Design of a simulation package for automated guided vehicle systems

Norman, Susan K. January 1985 (has links)
No description available.
34

A laser-guided, autonomous automated guided vehicle

Fithian, Jeff E. 08 June 2010 (has links)
The purpose of this research was to determine the feasibility of a laser-based positioning system as a primary navigation method. The system developed for this research consisted of an automated guided vehicle which navigated solely with the use of the laser-based positioning system in real-time. To date, there are no systems which can navigate a pre-defined path using such a positioning system. Some lessons were learned by the researcher, however, concerning the viability of this system in an industrial environment. The system should have had the following advantages over previous systems: 1) Greater range, 2) no prior structuring of environment, 3) real-time navigation, and 4) no reliance on dead-reckoning for navigation. The results showed that goals two through four had been met and are advantages of this system over current systems. The range of this system is limited, however, but it is believed that the next generation system should have greater range than the system used in this research. / Master of Science
35

Random Finite Set Methods for Multitarget Tracking

Dunne, Darcy 04 1900 (has links)
<p>Multiple target tracking (MTT) is a major area that occurs in a variety of real world systems. The problem involves the detection and estimation of an unknown number of targets within a scenario space given a sequence of noisy, incomplete measurements. The classic approach to MTT performs data association between individual measurements, however, this step is a computationally complex problem. Recently, a series of algorithms based on Random Finite Set (RFS) theory, that do not require data association, have been introduced. This thesis addresses some of the main deficiencies involved with RFS methods and derives key extensions to improve them for use in real world systems.\\</p> <p>The first contribution is the Weight Partitioned PHD filter. It separates the Probability Hypothesis Density (PHD) surface into partitions that represent the individual state estimates both spatially and proportionally. The partitions are labeled and propagated over several time steps to form continuous track estimates. Multiple variants of the filter are presented. Next, the Multitarget Multi-Bernoulli (MeMBer) filter is extended to allow the tracking of manoeuvring targets. A model state variable is incorporated into the filter framework to estimate the probability of each motion model. The standard implementations are derived. Finally, a new linear variant of the Intensity filter (iFilter) is presented. A Gaussian Mixture approximation provides more computationally efficient implementation of the iFilter.</p> <p>Each of the new algorithms are validated on simulated data using standard multitarget tracking metrics. In each case, the methods improve on several aspects of multitarget tracking in the real world.</p> / Doctor of Engineering (DEng)
36

Theoretical and experimental development of an active acceleration compensation platform manipulator for transport of delicate objects

Dang, Anh X. H. 12 1900 (has links)
No description available.
37

Development of deterministic collision-avoidance algorithms for routing automated guided vehicles /

Pai, Arun S. January 2008 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2008. / Typescript. Includes bibliographical references (leaves 62-63).
38

UAV Formation Flight Utilizing a Low Cost, Open Source Configuration

Lopez, Christian W 01 June 2013 (has links)
The control of multiple unmanned aerial vehicles (UAVs) in a swarm or cooperative team scenario has been a topic of great interest for well over a decade, growing steadily with the advancements in UAV technologies. In the academic community, a majority of the studies conducted rely on simulation to test developed control strategies, with only a few institutions known to have nurtured the infrastructure required to propel multiple UAV control studies beyond simulation and into experimental testing. With the Cal Poly UAV FLOC Project, such an infrastructure was created, paving the way for future experimentation with multiple UAV control systems. The control system architecture presented was built on concepts developed in previous work by Cal Poly faculty and graduate students. An outer-loop formation flight controller based on a virtual waypoint implementation of potential function guidance was developed for use on an embedded microcontroller. A commercially-available autopilot system, designed for fully autonomous waypoint navigation utilizing low cost hardware and open source software, was modified to include the formation flight controller and an inter-UAV communication network. A hardware-in-the-loop (HIL) simulation was set up for multiple UAV testing and was utilized to verify the functionality of the modified autopilot system. HIL simulation results demonstrated leader-follower formation convergence to 15 meters as well as formation flight with three UAVs. Several sets of flight tests were conducted, demonstrating a successful leader-follower formation, but with relative distance convergence only reaching a steady state value of approximately 35 +/- 5 meters away from the leader.
39

DTaylor_Thesis.pdf

Dylan Taylor (18283231) 01 April 2024 (has links)
<p dir="ltr">Introduces a new framework and state-of-the-art algorithm in closed-loop prediction for motion planning under differential constraints. More specifically, this work introduces the idea of sampling on specific "sampling regions" rather than the entire workspace to speed-up the motion planning process by orders of magnitude.</p>
40

A methodology that integrates the scheduling of job sequencing and AGV dispatching in a FMS

Hamilton, Wade W. 04 September 2008 (has links)
A Flexible Manufacturing System (FMS) is an integrated system consisting of several automated work centers interconnected by an automated material handling system. An integrated scheduling methodology is required to schedule all FMS sub-systems. The overall objective of this research was to develop a scheduling methodology to integrate job sequencing and Automatic Guided Vehicle System dispatching within a FMS environment. To develop the new scheduling methodology, the currently used AGVS controller decision set was examined and expanded. The expanded decision set gives the AGVS controller more options to choose from when scheduling the AGVS. The developed integrated scheduling methodology contains four steps. The first step determines which job is to be processed next by each work center based on job sequencing heuristics. The second step determines which work center is to be serviced next by the AGVS based on the estimated time till the work center is forced to stop production. The third step determines which specific job is to be serviced next by the AGVS by combining the work centers' processing orders and the work center servicing priorities. The fourth step decides which AGV is to transport the job requiring immediate service. Based on the preliminary study of a fictitious FMS, the new scheduling methodology showed a statistically significant increase in total job throughput, and a significant decrease in average flow time. Work center utilization also increased. A slight increase in unloaded AGV travel time was found, but was outweighed by the other benefits. / Master of Science

Page generated in 0.0479 seconds