1 |
Electronic properties of £_-doped InxGa1-xAs/InAlAs Quantum wellsChen, Jyun-fan 06 July 2005 (has links)
We have studied the electronic properties of InxGa1-xAs/
In0.52Al0.48As quantum wells by using Shubnickove-de Hass (SdH) measurement. The indium composition (x) of well layers was varied from 0.5 to 0.56 whit different structures, such as sample A is simply ¡§In0.53Ga0.47As¡¨, sample B is a step-well like¡§In0.56Ga0.44As/In0.53Ga0.47As/In0.5Ga0.47As¡¨,sample C is linearly graded well is a opposite way¡§In0.56Ga0.44As down to In0.5Ga0.5As, and sample D is linearly graded well ¡§In0.5Ga0.5As up to In0.56Ga0.44As.¡¨ It was found that the two SdH oscillations beat each other due to the population of the lowest two subbands in these samples. In order to investigate the electronic properties of the two subbands, we have done the Ven der Pauw Hall measurement . From SdH and Hall measurement, we are able to determine the individual mobility and carrier concentrations for two-subband-populated samples.
|
2 |
Modelling of advanced submicron gate InGaAs/InAlAs pHEMTs and RTD devices for very high frequency applicationsMat Jubadi, Warsuzarina January 2016 (has links)
InP-based InAlAs/InGaAs pseudomorphic High Electron Mobility Transistors (pHEMTs) have shown outstanding performance; this makes them prominent in high frequency mm-wave and submillimeter-wave applications. However, conventional InGaAs/InAlAs pHEMTs have major drawbacks, i.e., very low breakdown voltage and high gate leakage current. These disadvantages degrade device performance, especially in Monolithic Microwave Integrated Circuit (MMIC) low noise amplifiers (LNAs). The optimisation of InAlAs/InGaAs epilayer structures through advanced bandgap engineering offers a key solution to the problem. Concurrently, device modelling plays a vital role in the design and analysis of pHEMT devices and circuit performance. In this research, two-dimensional (2D) physical modelling of 1 m and sub-micro metre gate length strained channel InAlAs/InGaAs/InP pHEMTs has been developed, in ATLAS Silvaco. All modelled devices were optimised and validated by experimental devices, which were fabricated at the University of Manchester. An underlying device physics insight is gained, i.e., the effect of changes to the device's physical structure, theoretical concepts and its general operation, and a reliable pHEMT model is obtained. The kink anomalies in the I-V characteristics were reproduced. The 2D simulation results demonstrate an outstanding agreement with measured DC and RF characteristics. The aim of developing linear and non-linear models for sub-micro metre transistors and their implementation in MMIC LNA design is achieved with the 0.25 m In0.7Ga0.3As/In0.52Al0.48As/InP pHEMT. An accurate method for the extraction of empirical models for the fabricated active devices has been developed, and optimised using the Advance Design System (ADS) software. The results demonstrate excellent agreement between experimental and modelled DC and RF data. Precise models for MMIC passive devices are also obtained, and incorporated in the proposed design for a single- and double-stage MMIC LNAs at C- and X-band frequencies. The single-stage LNA is designed to achieve a maximum gain ranging from 9 to 13 dB over the band of operation, while the gain is increased to between 20 dB and 26 dB for the double-stage LNA designs. A noise figure of less than 1.2 dB and 2 dB is expected, for the C- and X-band LNAs respectively, while retaining stability across all frequency bands. Although the RF performance of pHEMT is being vigorously pushed towards the terahertz (THz) region, novel devices such as the Resonant Tunnelling Diode (RTD) are needed to support future ultra-high-speed, high-frequency applications. Hence, the study of physical modelling is extended to quantum modelling of an advanced In0.8Ga0.2As/AlAs RTD device. The aim is to effectively model both large-size and submicron RTDs, using Silvaco's ATLAS software to reproduce the peak current density, peak-to-valley-current ratio (PVCR), and negative differential resistance (NDR) voltage range. The physical modelling for the RTD devices is optimised to achieve an excellent match with the fabricated RTD devices; variations in the spacer thickness, barrier thickness, quantum well thickness and doping concentration are included.
|
3 |
Routes to cost effective realisation of high performance submicron gate InGaAs/InAlAs/InP pHEMTIan, Ka Wa January 2013 (has links)
The Square Kilometre Array (SKA) is known to be the most powerful radio telescope of its type. In support of its high observational power, it is estimated that thousands of antenna unit equipped with millions of LNA (low noise amplifier) will be deployed over a large area (radius>3000km). The stringent requirements for high performance and low cost LNA design bring about many challenges in terms of material growth, device fabrication and low noise circuit designs. For the past decade, the Manchester group has been wholeheartedly committed to the research and development of high performance, low cost Monolithic Microwave Integrated Circuit (MMIC) LNA with high breakdown (15V) and low noise characteristics (1.2dB to 1.5dB) for the SKA mid-frequency application (0.4GHz to 1.4GHz). The on-going optimisation of current design is hindered by the restriction of standard i-line 1µm gate lithography. The primary focus of this work is on the design and fabrication of new, submicron gate InGaAs/InAlAs/InP pHEMTs for high frequency applications and future SKA high frequency bands. The study starts with the design and fabrication of InGaAs-InAlAs pHEMT sub-100nm gate structure using E-Beam lithography. To address the problems of short channel effect and parasitic components, devices with 128nm T-gate structure, and with optimised device geometries and enhanced material growth, having fT of 162GHz and fmax of 183GHz are demonstrated, outlining the importance of device scaling for high speed operation. In addition, a gate-sinking technique using Pd/Ti/Au metallisation scheme was investigated to meet the requirement for single voltage supply in circuit design. Device with Pd-buried gate exhibits enhanced DC and RF characteristics and showed no degradation over 5 hours’ annealing at 230˚C. The implementation of this highly thermal stable Pd Schottky gate is key to improving the device’s long-term reliability at high-temperature operation. To solve the problem of low productivity in E-Beam lithography, a simple, low cost, technique termed soft reflow was introduced by utilising the principle of solvent vaporisation in a closed chamber. It provides a hybrid solution for the fabrication of submicron device using low cost i-line lithography. The integration of this new soft reflow process with the Pd-gate sinking technique has enabled the large-scale fabrication of 250nm T-gate pHEMTs, with excellent fT of 108GHz and a fmax of 119GHz and with device yields exceeding 80%. This novel soft reflow technique provides a high yield, fast throughput, solution for the fabrication of submicron gate pHEMT and other ultra-high frequency nanoscale devices.
|
4 |
InGaAs-AlAs and InGaAs-InGaP Strain-Compensated Heterostructures for Short-Wavelength Intersubband Transitions and LasersSemtsiv, Mykhaylo 28 September 2004 (has links)
Der Quantenkaskadenlaser (QCL) ist ein unipolares Intersubbandbauelement dessen Funktionsweise auf Übergängen zwischen dem ersten angeregten Zustand und dem Grundzustand in einem Quantentopf (quantum well, QW) beruht. Er wurde im Jahre 1974 von Kazarinov und Suris theoretisch vorhergesagt und erstmals 1994 von Faist et al. experimentell realisiert. Das Elektron verlässt nach dem Laserübergang nicht das Leitungsband und kann somit durch ein angelegtes elektrisches Feld in die nächste aktive Zone transferiert werden, wo es wiederum einem Laserübergang untergehen kann. Schliesslich, nach einer Reihe solcher Kaskadenprozesse, emittiert ein einzelnes Elektron viele Photonen; dies definiert die hohe Quanteneffizienz der QCLs. Das Hauptproblem bei der kaskadierten Benutzung von aktiven Regionen ist ein schneller Elektronentransport zwischen den emittierenden QWs mithilfe des sogenannten Injektors. Ein schneller Transport der Ladungsträger ist notwendig um das obere Laserniveau zu populieren und das untere zu depopulieren, womit die für die stimulierte Emission notwendige Besetzungsinversion erreicht werden kann. Zur Gewährleistung des schnellen Transports im Injektor ist die Verwendung von Materialien mit einer geringen effektiven Masse naheliegend. Unter den technologisch wichtigen III-V Verbindungen besitzt InAs die geringste elektronische effektive Masse von 0.023m0 (wobei m0 die Masse des freien Elektrons ist). Die binäre Verbindung mit der nächst grösseren effektiven Masse ist GaAs mit m*=0.067m0. Bisher wurden QCLs in beiden, InAs und GaAs und weiterhin im ternären InGaAs basierten QW Materialsystem realisiert. Gegenwärtig zeigen QCLs einen hohen Grad der Reife; hohe Lichtleistung, Dauerstrichbetrieb und Betrieb bei Raumtemperatur sowie Oberflächenemission wurden erzielt. Der von den QCLs abgedeckte spektrale Bereich erstreckt sich von 3.5 Mikrometer bis zu 87 Mikrometer. Trotz des hohen Reifegrades ist der Quantenkaskadenlaser immernoch in der Entwicklung. Speziell die Erweiterung des spektralen Bereichs ist für viele Anwendungen essentiell. Enorme Fortschritte bei der Erweiterung hin zu grösseren Wellenlängen wurden in den letzten Jahren erzielt, dennoch ist der kurzwellige Rekord von 3.5 Mikrometer aus dem Jahre 1998 bisher ungebrochen. Nichtsdestotrotz besitzt der QCL auch im nahen Infrarot das Potential den konventionellen Interbandlaser zu übertreffen. Neben dem Wettstreit um Schwellströme und Ausgangsleistungen, ist aufgrund der andersartigen Physik des Laserüberganges eine verbesserte Anwendungsmöglichkeit im Bereich des schnellen optischen Schaltens zu erwarten. Die Herausforderung im Bereich der kurzwelligen QCLs liegt in der beschränkten Leitungsbanddiskontinuität (CBO) zwischen Quantentopf- und Quantenbarrierenmaterial. Um zwei gebundene elektronische Eigenzustände innerhalb der Quantentöpfe der aktiven Zone zu gewährleisten, wird eine grosse Leitungsbanddiskontinuität benötigt. Weiterhin kann nur so eine ausreichend hohe Barriere zwischen den angeregten Zuständen und dem klassischen Zustandskontinuum bei angelegtem elektrischen Feld erreicht werden. Neben der Notwendigkeit des grossen CBO sollte das Barrierenmaterial eine direkte Bandlücke aufweisen oder zumindest der angeregte Zustand in der aktiven Zone unterhalb des niedrigsten Leitungsbandes des Barrierenmaterials liegen. Mit der Einschränkung bezüglich der Gitterkonstanten von Quantentopf und -barrierenmaterial für ein koh ärentes Wachstum auf einem bestimmten Substrat, endet man bei nur einer Hand voll vielversprechender Materialkombinationen für die Anwendung in QCLs. Das grösste CBO für Materialien mit direkter Bandlücke findet man bei InGaAs/InAlAs. Wir erzielen 520 meV für die ternäre an InP gitterangepasste und 740 meV für die spannungskompensierte In(0.70)Ga(0.30)As/In(0.40)Al(0.60)As Kombination. Unter den Barrierenmaterialien mit indirekter Bandlücke ist die Kombination InAs/AlSb auf GaSb oder InAs mit 2.1 eV CBO im Gamma-valley sehr vielversprechend. Quantenkaskadenlaser basierend auf diesem Materialsystem mit Emission bei 10 Mikrometer wurden kürzlich von Ohtani and Ohno realisiert. Jedoch wurde im kurzwelligen Bereich um 4 und 3 Mikrometer in diesem System bisher nur spontane Emission beobachtet. Damit ist es bis heute ein offene Frage, welches Materialsystem tatsächlich das geeignetste für die Anwendung in kurzwelligen QCLs sein wird und ob es überhaupt möglich sein wird, ihren Wellenlängenbereich auf die Telekommunikationswellenlänge von 1.55 Mikrometer auszuweiten, was zweifellos die grösste Herausforderung darstellt. Oberflächenemission von QCLs ist bisher mittels der Aufbringung einer Rippenstruktur mit kurzer Periode auf der Oberfläche der Laserstreifen erreicht worden. Die Möglichkeit einer Polarisation in der Fläche mithilfe selbstorganisierter Quantenpunktstrukturen innerhalb der aktiven Zone ist ein aktuelles Thema innerhalb der QCL-Gemeinschaft, aber bisher noch unerreicht. Die Kombination aus feldinduzierten Minibändern aus elektronischen Zuständen in konventionellen QCLs und diskreten atomartigen Zuständen in Quantenpunkten ist eine kreative und gleichzeitig widersprüchliche Idee. Dennoch vereint dieses Thema ein gewaltiges Interesse sowohl von theoretischer als auch experimenteller Seite innerhalb der QCL-Gemeinschaft. Diese Arbeit ist der Erweiterung der Materialvielfalt für die Herstellung von Quantenkaskadenlasern gewidmet. Die Mission dieser Forschungsarbeit ist - die Grenzen im Gebrauch des spannungskompensierten Designs des klassischen InGaAs/InAlAs Materialsystems auf InP für kurzwellige Emission auszuloten; - die Möglichkeiten kurzwelliger Intersubbandemission in einer der extraordinären Materialkombinationen für die QCL-Anwendung zu erforschen: spannungskompensiertes InGaAs/InGaP auf GaAs; Die Quintessenz der gesamten Forschungsarbeit besteht in der spannungskompensierten Herangehensweise und den InGaAs enthaltenden Materialsystemen für die Anwendung in Quantenkaskadenlasern. Die Arbeit ist wie folgt strukturiert: Kapitel 1: Die vorliegende Einführung. Kapitel 2: Kurzer überblick der Eigenschaften von Intersubbandübergängen und der Grundlagen der QCL-Funktionsweise. In diesem Kapitel wird eine Einführung in die Eigenschaften von Intersubbandübergängen und den Minibandtransport gegeben. Dieses Kapitel unterstreicht den physikalischen Unterschied von Intersubbandübergängen und Transport zum Fall der Interbandübergnge und gibt eine Einführung in die vorteilhaften Eigenschaften der Intersubbandbauelemente. Weiterhin wird eine Einführung in die Physik des Quantenkaskadenlasers und eine übersicht der Designvielfalt der aktiven Zone gegeben. Im Speziellen wird auf die unterschiedlichen Strategien bei der Erzielung der Besetzungsinversion eingegangen. Kapitel 3: Experimentelles Kapitel. Das 3. Kapitel fasst die erzielten eigenen Ergebnisse innerhalb des InGaAs/InAlAs Materialsystems auf InP zusammen. Dabei konzentriert es sich auf extreme Fälle des spannungskompensierten Designs welche die Realisierung kurzwelliger übergänge zum Ziel haben. Kapitel 4: Experimentelles Kapitel. Im 4. Kapitel werden die erzielten eigenen Ergebnisse innerhalb des InGaAs/InGaP Materialsystems dargestellt. Das InGaAs/InGaP Materialsystem auf GaAs wurde unseres Wissens zuvor füür Intersubbandbauelemente weder benutzt noch vorgeschlagen. Das Kapitel beschreibt den gesamten Verlauf, beginnend mit dem Probenwachstum über grundlegende Materialstudien, bis hin zum Design der QC-Teststruktur und deren Fabrikation. Kapitel 5: Hierin wird die Zusammenfassung der erzielten eigenen Ergebnisse und daraus resultierenden Schlussfolgerungen gegeben. / Quantum cascade lasers, QCL, are unipolar intersubband devices, which work on transitions between the first excited and the ground state in quantum wells, QW. They where predicted theoretically by Kazarinov and Suris 1974, and realized experimentally for the first time by Faist et al. 1994. Electron does not leave the conduction band after the lasing transition in QCL. And therefore it can be used again in the next active region, where it can be transferred due to applied electric field. Finally, after a number of such cascade processes, single electron emits many photons, which defines a high quantum efficiency of QCLs. The key issue in use of cascaded active regions is a fast electron transport in between the emitting QWs (so called, injector region). Fast carrier transfer is needed on the one hand to effectively populate the upper lasing state in active region QW and on the other hand to quickly depopulate the lower lasing state. So that population inversion, necessary for stimulated emission, is achieved. To provide the fast transport in injector region it is likely to deal with materials with a low effective mass. Among the variety of technologically important III-V compounds InAs has the lowest electron effective mass of 0.023m0 (where m0 is the free electron mass). Next low effective mass binary material after InAs is GaAs with m*=0.067m0. Up to now QCLs are realized on both, InAs- and GaAs- as well as ternary InGaAs-based-QW material systems. Currently QCLs show a high level of maturity. High power, cw-operation and room temperature operation as well as surface emission are achieved. Spectral range, covered by QCLs, extends from 3.5 micrometer up to 87 micrometer. Despite of the high level of maturity, QCLs are still under development. In particular, extension of the spectral range of operation is likely for many applications. Tremendous progress was achieved last years in long wavelength range extension of QCLs. However, the short wavelength record of 3.5 micrometer has not been beaten since 1998. Nevertheless, QCLs has a potential to outperform conventional interband lasers also in near infrared spectral range. Apart from competition in threshold current densities and output power, QCLs are expected to be better in fast optical switching operation due to different physics of lasing transitions. The challenge of short wavelength QCLs is a limited conduction band edge offset, CBO, between the quantum well and barrier material. High CBO is needed to confine two quantized electron states in active region QW and to provide sufficient barrier between the excited state and classical continuum of states above the barrier material conduction band edge under applied electric field. More over, despite of high CBO demand, barrier should be the direct band gap material, or at least, the upper lasing state in active region should lay below the lowest conduction band valley in the barrier material. Together with restriction on the lattice constant of both, well and barrier materials, for coherent growth on a certain substrate, we end up with very few promising material combinations for QCL application. The highest CBO for direct band gap materials combination we find in InGaAs/InAlAs. We obtain 520 meV for lattice matched to InP ternaries and about 740 meV for strain-compensated In(0.70)Ga(0.30)As/In(0.40)Al(0.60)As combination. Among the indirect barrier material combinations, very promising is InAs/AlSb on GaSb or InAs with 2.1 eV CBO in gamma-valley. QCL emitting at 10 micrometer has been recently realized on this material system by Ohtani and Ohno. However, at short wavelength, 4 and 3 micrometer, only spontaneous emission is obtained in this material system up to now experimentally. So up to now, it is still an open question, which material system is going to be most suitable for short wavelength QCL application. And it is still an open question, if it is possible at all to extend the operation wavelength of QCLs to the most challenging 1.55 micrometer telecommunication wavelength. Surface emission is achieved in QCLs up to now by manufacturing of the short period grating on the top of the planar laser stripe. The possibility of in-plane polarized emission involving self organized quantum dot structures into the QCL active region is a hot topic in QCL community, but it is not achieved experimentally up to now. Combining the field induced minibands of electron states in conventional QCLs together with discrete atom-like states in QDs is a creative and at the same time contradictive idea. Nevertheless, this topic attracts a huge interest from both, theoretical and experimental, side of QCL community. This work is dedicated to make a step forward in extension of material variety used for QCL fabrication. The mission of this research is - to find out the limits of use of strain-compensated designs on classical InGaAs/InAlAs material system on InP to achieve the short wavelength generation; - to discover the possibilities of short wavelength intersubband generation in one of extraordinary material combinations for QCL application: strain-compensated InGaAs/InGaP on GaAs; The bottom line of the whole research is strain compensation approach and InGaAs containing material systems for QCL application. Present work consist of: Chapter 1: The current introduction. Chapter 2: Brief overview of intersubband transitions properties and the basics of QCL action. In the overview-chapter an introduction into the properties of intersubband transitions and miniband transport is given. This chapter underlines the difference in physics of intersubband transitions and transport comparing to the case of interband transitions; and gives an introduction into the advantageous properties of intersubband devices. This chapter gives an introduction into the quantum cascade laser physics and overview on variety of active region designs. This chapter is, specially, dedicated to point out different ways of achieving the population inversion in each QCL active region approach. Chapter 3: Experimental chapter. Third chapter describes obtained original results on InGaAs/InAlAs material system on InP during the present work. It concentrates on extreme cases of strain-compensated designs for achieving the short wavelength transitions. Chapter 4: Experimental chapter. Forth chapter describes obtained original results on InGaAs/InGaP material system. InGaAs/InGaP material system on GaAs was never before, up to our knowledge, proposed or used for intersubband devices. So, the chapter describes all the way from the sample growth issues and basic study of this material up to QC test-structure design and fabrication. Chapter 5: Here, the summary of obtained original results and conclusions are given.
|
5 |
Low Noise Amplifiers using highly strained InGaAs/InAlAs/InP pHEMT for implementation in the Square Kilometre Array (SKA)Mohamad Isa, Muammar Bin January 2012 (has links)
The Square Kilometre Array (SKA) is a multibillion and a multinational science project to build the world’s largest and most sensitive radio telescope. For a very large field of view, the combined collecting area would be one square kilometre (or 1, 000, 000 square metre) and spread over more than 3,000 km wide which will require a massive count of antennas (thousands). Each of the antennas contains hundreds of low noise amplifier (LNA) circuits. The antenna arrays are divided into low, medium and high operational frequencies and located at different positions to boost up the telescope’s scanning sensitivity.The objective of this work was to develop and fabricate fully on-chip LNA circuits to meet the stringent requirements for the mid-frequency array from 0.4 GHz to 1.4 GHz of the SKA radio astronomy telescope using Monolithic Microwave Integrated Circuit technology (MMIC). Due to the number of LNA reaching figures of millions, the fabricated circuits were designed with the consideration for low cost fabrication and high reliability in the receiver chain. Therefore, a relaxed optical lithography with Lg = 1 µm was adopted for a high yield fabrication process.Towards the fulfilment of the device’s low noise characteristics, a large number of device designs, fabrication and characterisation of InGaAs/InAlAs/InP pHEMTs were undertaken. These include optimisations at each critical fabrication steps. The device’s high breakdown and very low gate leakage characteristics were further improved by a combination of judicious epitaxial growth and manipulation of materials’ energy gaps. An attempt to increase the device breakdown voltage was also employed by incorporating Field Plate structure at the gate terminal. This yielded the devices with improvements in the breakdown voltage up to 15 V and very low gate leakage of 1 µA/mm, in addition to high transconductance (gm) characteristic. Fully integrated double stage LNA had measured NF varying from 1.2 dB to 1.6 dB from 0.4 GHz to 1.4 GHz, compared with a slightly lower NF obtained from simulation (0.8 dB to 1.1 dB) across the same frequency band.These are amongst the attractive device properties for the implementation of a fully on-chip MMIC LNA circuits demonstrated in this work. The lower circuit’s low noise characteristic has been demonstrated using large gate width geometry pHEMTs, where the system’s noise resistance (Rn) has successfully reduced to a few ohms. The work reported here should facilitate the successful implementation of rugged low noise amplifiers as required by SKA receivers.
|
Page generated in 0.0365 seconds