• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 17
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 18
  • 18
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies On The Combustion And Gasification Of Concentrated Distillery Effluent

Patel, Nikhil 10 1900 (has links)
The need for effective disposal of huge volumes of industrial waste is becoming more challenging due to expected imposition of stringent pollution control regulations in the near future. Thermochemical conversion, particularly gasification of organics in the waste is considered the best route from the perspective of volume reduction and prevalent eco-friendly concept of waste-to-energy transformation. It is considered imperative to have adequate understanding of basic combustion features as a part of the thermochemical conversion process, leading to gasification. The aim of this thesis is to understand the fundamental combustion processes associated with one of the top listed hazardous wastes from distilleries (Biochemical Oxygen Demand (BOD) ~ 40,000 - 50,000 mg/L), commonly known as vinasse, stillage or spent wash, through experiments and modeling efforts. Specially designed experiments on distillery effluent combustion and gasification are conducted in laboratory scale reactors. As an essential starting point of the studies on ignition and combustion of distillery effluent containing solids consisting of 62 ± 2 % organics and 38 ± 2 % inorganics (primarily sugarcane derivatives), the roles of solids concentration, drop size and ambient temperature were investigated through experiments on (1) liquid droplets of 65 % and 77 % solids (remaining water) and (2) spheres of dried effluent (100 % solids) of size 0.5 mm to 20 mm diameter combusted at ambient temperatures of 773 to 1273 K. The investigation reveals that the droplets burn with two distinct regimes of combustion, flaming and char glowing. The ignition delay ‘t1’ of the droplets increased with size as is in the case of non-volatile droplets, while that of bone-dry spheres was found to be independent of size. The ‘t1’ decreased with increase in solids concentration. The ignition delay has showed an Arrhenius dependence on temperature. The initial ignition of the droplets and the dry spheres led to either homogeneous (flaming) or heterogeneous (flameless) combustion, depending on the ambient temperature in the case of sphere and on solid concentration and the ambient temperature, in the case of liquid droplets. The weight loss during the flaming combustion was found to be 50 - 80 % while during the char glowing it was 10-20 % depending on the ambient temperature. The flaming time tc is observed as tc~ d2c , as in the case of liquid fuel droplets and wood spheres. The char glowing time tc' is observed as tc ~ d2c as in the case of wood char, though the inert content of effluent char is as large as 50 % compared to 2 - 3 % in wood char. In the case of initial flameless combustion, the char combustion rate is observed to be lower. The heterogeneous char combustion in quiescent air in controlled temperature conditions has been studied and modeled using one-dimensional, spherico-symmetric conservation equations and the model predicts most of the features of char combustion satisfactorily. The measured surface and core temperatures during char glowing typically are in the range of 200 to 400 K and are higher than the controlled temperature of the furnace. Based on the results of single droplet combustion studies, combustion experiments were conducted in a laboratory scale vertical reactor (throughput ranging from 4 to 10 g/s) with the primary aim of obtaining sustained combustion. Spray of effluents with 50 % and 60 % solids (calorific value 6.8 - 8.2 MJ/kg), achieved by an air blast atomizer, was injected into a hot oxidizing environment to determine the parameters (ambient temperature and air-fuel ratio) at which auto-ignition could occur and subsequently studies were continued to investigate pre-ignition, ignition and combustion processes. Effluent with lower solids concentration was considered first from the point of view of the less expensive evaporator required in the field conditions for concentration and a spin-off in terms of better atomization consequently. Three classes of experiments were conducted: 1) Effluent injection from the wall with no auxiliary heat input, 2) Effluent injection with auxiliary heat input and 3) effluent injection within kerosene enveloping flame. Though individual particles in the spray periphery were found to combust, sustained spray combustion was not achieved in any of the three sets of experiments even with fine atomization. While conducting the third class of experiments in an inclined metallic reactor, sustained combustion of the pool resulting of accumulated spray seemed to result in large conversion of carbon. This led to the adoption of a new concept for effluent combustion in which the residence time is controlled by varying reactor inclination and the regenerative heat transfer from the product gases supplies heat for endothermic pre-ignition process occurring on the bed. Combustion and gasification experiments were conducted in an inclined plate reactor with rectangular cross section (80 mm x 160 mm) and 3000 mm long. A support flame was found necessary in the injection zone in addition to the regenerative heat transfer. Effluent with 60% solids was injected as film on the reactor bed. This film disintegrated into fine particles due to induced aerodynamic stretching and shear stripping. Combustion of individual particles provided exothermic heat profile and resulted into high carbon conversion. However, effluent clogging in the cold injection zone hindered system from attaining steady state. Effluent injected directly on the hot zone caused it to remain mobile due to the spheroidal evaporation and thus assuaging this problem. Improved mass distribution was achieved by displacing nozzle laterally in a cycle, actuated by a mechanism. Consistent injection led to sustained effluent combustion with resulting carbon conversion in excess of 98 %. The typical gas fractions obtained during gasification condition (air ratio = 0.3) were CO2 = 14.0 %, CO = 7.0 %, H2 = 12.9 %, CH4 - 1 % H2S = 0.6 - 0.8 % and about 2 % of saturated moisture. This composition varied due to variation in temperature (± 30 K) and is attributed to combined effect of local flow variations, shifting zones of endothermic processes due to flowing of evaporating effluent over a large area. In order to minimize this problem, experiments were conducted by injecting effluent at higher solids (73 % solids is found injectable). The effluent was found to combust close to the injection location-due to the reduced ignition delay and lower endothermic evaporation load helped raising the local temperature. This caused the pyrolysis to occur in this hottest zone of the reactor with higher heating rates resulting in larger yield of devolatilized products and improved char conversion. Effluent combustion was found to sustain temperature in the reactor under sub-stoichiometric conditions without support of auxiliary heat input and achieved high carbon conversion. These results inspired the use of higher concentration effluent, which is also known in the case of wood to have improved gasification efficiency due to reduction in moisture fraction. In addition, the recent studies on the sulfur emission in the case of black liquor combustion in recovery boilers have revealed that with increase in solids concentration, release of sulfur in gas phase is reduces. The required concentration can be carried out using low-grade waste heat from the reactor itself. It was found through experiments that, even though spray ignition occurred at this concentration, the confined reactor space prevented the spray from attaining sustained combustion. This led to the conduct of experiments in a new vertical reactor with adequate thermal inertia, essential to prevent variations in local temperature to reach a steady state gasification and required space to accommodate the spray. The results of the experiments conducted in the vertical reactor in which effluents with 73 % solids, heated close to the boiling point and injected as fine spray in a top-down firing mode are consolidated and reported in the thesis in detail. Single particle combustion with enveloping faint flame was seen unlike stable flame found in coal water slurry spray combustion. Sustained gasification of gas-entrained particles occurred at reactor temperature in the range of 950 K - 1000 K and sub-stoichiometric air ratio 03 - 0.35 without the support of auxiliary fuel. The typical gas fractions obtained during gasification condition (air ratio = 0.3) were CO2 = 10.0 -11.5 %, CO - 10.0 - 12.0 %, H2 - 6.7 - 8.0 %, CH4 = 1.75 % H2S = 0.2 - 0.4 % and about 2 % of saturated moisture. The carbon conversion obtained was in the range of 95 - 96 %. These experiments have provided the conditions for gasification. The extraction of potassium salts (mostly sulfates, carbonate and chloride) from the ash, using a simple water leaching process, was found to recover these chemicals to as high an extent as 70 - 75 % of total ash. In summary it is concluded that increasing the solid concentrations to as high levels as acceptable to the system (~ 75 %) and introducing as a fine spray of heated material (~ 363 K) into furnace with air at sub-stoichiometric conditions in a counter current combustion reactor will provide the frame work for the design of a gasification system for vinasse and similar effluent material. The thesis consists of seven chapters. Chapter 1 introduces the problem and motivation of the work presented in the thesis. Literature review is presented in Chapter 2. The Chapter 3 deals with the single particle combustion studies. The results of effluent spray combustion experiments conducted in a laboratory scale vertical reactor are presented in Chapter 4. The results of combustion and gasification experiments conducted in another variant of a reactor, namely, inclined flat plate rectangular reactor is consolidated in Chapter 5. The results of gas-entrained spray gasification experiment of higher concentration effluent injected as spray in the vertical reactor are presented in Chapter 6. The general conclusions and scope for the future work are presented in the concluding chapter 7.
22

Phase redistribution and separation of gas-liquid flows in an equal-sided impacting tee junction with a horizontal inlet and inclined outlets

Mohamed, Moftah 24 September 2012 (has links)
Phase-redistribution and full-phase separation data were generated for two-phase (air-water) flow splitting at an equal-sided impacting tee junction with a horizontal inlet and inclined outlets. The flow loop incorporated a tee junction machined in an acrylic block with the three sided having an equal diameter of 13.5 ± 0.1 mm I.D. Both sets of experiments were conducted at a nominal pressure (Ps) of 200 kPa (abs) and near-ambient temperature (Ts). The operating conditions for the phase-redistribution experiments were as follows: inlet superficial liquid velocities (JL1) ranging from 0.01 to 0.18 m/s, inlet qualities (x1) ranging from 0.1 to 0.9, mass split ratios (W3/W1) from 0 to 1.0, and outlet inclination angles ranging from horizontal to vertical. These inlet conditions corresponded to inlet flow regimes of stratified, wavy, and annular. Phase-redistribution data revealed that the redistribution of phases depended on the inlet conditions, the mass split ratio at the junction, and the inclination angle of the outlets. The magnitude of the inclination effect was dependent on the inlet flow regime. The phase redistribution in stratified flow was very sensitive to the outlet angle and full separation could be achieved at angles as low as 0.7°. Wavy flow was less sensitive to the outlet angle and annular flow was even less sensitive to the outlet angle. The capability of a single impacting tee junction to perform as a full phase separator has been examined. Experimental data were obtained for the limiting inlet conditions under which full separation was attainable at various outlet inclinations (θ) of 2.5°, 7.5°, 15°, 30°, 60°, 75°, and 90°. Full separation data have shown that a single impacting tee junction can perform as a full-phase separator for some inlet conditions. Flow phenomena near the limiting conditions were observed and a simple correlation based on the similarity between these flow phenomena and the phenomenon of liquid entrainment in small upward branches was developed. This correlation was capable of accurate prediction of the data in terms of magnitude and trend.
23

Phase redistribution and separation of gas-liquid flows in an equal-sided impacting tee junction with a horizontal inlet and inclined outlets

Mohamed, Moftah 24 September 2012 (has links)
Phase-redistribution and full-phase separation data were generated for two-phase (air-water) flow splitting at an equal-sided impacting tee junction with a horizontal inlet and inclined outlets. The flow loop incorporated a tee junction machined in an acrylic block with the three sided having an equal diameter of 13.5 ± 0.1 mm I.D. Both sets of experiments were conducted at a nominal pressure (Ps) of 200 kPa (abs) and near-ambient temperature (Ts). The operating conditions for the phase-redistribution experiments were as follows: inlet superficial liquid velocities (JL1) ranging from 0.01 to 0.18 m/s, inlet qualities (x1) ranging from 0.1 to 0.9, mass split ratios (W3/W1) from 0 to 1.0, and outlet inclination angles ranging from horizontal to vertical. These inlet conditions corresponded to inlet flow regimes of stratified, wavy, and annular. Phase-redistribution data revealed that the redistribution of phases depended on the inlet conditions, the mass split ratio at the junction, and the inclination angle of the outlets. The magnitude of the inclination effect was dependent on the inlet flow regime. The phase redistribution in stratified flow was very sensitive to the outlet angle and full separation could be achieved at angles as low as 0.7°. Wavy flow was less sensitive to the outlet angle and annular flow was even less sensitive to the outlet angle. The capability of a single impacting tee junction to perform as a full phase separator has been examined. Experimental data were obtained for the limiting inlet conditions under which full separation was attainable at various outlet inclinations (θ) of 2.5°, 7.5°, 15°, 30°, 60°, 75°, and 90°. Full separation data have shown that a single impacting tee junction can perform as a full-phase separator for some inlet conditions. Flow phenomena near the limiting conditions were observed and a simple correlation based on the similarity between these flow phenomena and the phenomenon of liquid entrainment in small upward branches was developed. This correlation was capable of accurate prediction of the data in terms of magnitude and trend.
24

Evaluation of the Performance of a Downward Flow Inclined Gravity Settler for Algae Dewatering

Bowden, Dustin D. 20 May 2015 (has links)
No description available.
25

Boundary Conditions for Granular Flows at Penetrable Vibrating Surfaces: Applications to Inclined Flows of Monosized Assemblies and to Sieving of Binary Mixtures

El Khatib, Wael 26 April 2013 (has links)
The purpose of this work is to study the effects of boundaries on granular flows down vibrating inclines, on segregation in granular mixtures induced by boundary vibrations, and on flows of granular mixtures through vibrating sieves. In each case, we employ techniques borrowed from the kinetic theory to derive an appropriate set of boundary conditions, and combine them with existing flow theories to calculate the profiles of solid volume fraction, mean velocity, and granular temperature throughout the flows. The boundaries vibrate with full three-dimensional anisotropy in a manner that can be related to their amplitudes, frequencies, and phase angles in three independent directions. At impenetrable surfaces (such as those on the inclines), the conditions derived ensure that momentum and energy are each balanced at the boundary. At penetrable surfaces (such as sieves), the conditions also ensure that mass is balanced at the boundary. In these cases, the momentum and energy balances also are modified to account for particle transport through the boundary. Particular interest in all the applications considered here is in how the details of the boundary geometry and the nature of its vibratory motion affect the resulting flows. In one case, we derive conditions that apply to a monosized granular material that interacts with a bumpy, vibrating, impenetrable boundary, and predict how such boundaries affect steady, fully developed unconfined inclined flows. Results indicate that the flows can be significantly enhanced by increasing the total energy of vibration and are more effectively enhanced by normal vibration than by tangential vibration. Regardless of the direction of vibration, the bumpiness of the boundary has a profound effect on the flows. In a second case, we derive conditions that apply to a binary granular mixture that interacts with a flat, vibrating, penetrable sieve-like boundary, and predict how such boundaries affect the process in which the particles pass through the sieve. In the special case in which the particles are all the same size, the results make clear that energy is more effectively transmitted to the assemblies when either the total vibrational energy or the normal component of the vibrational energy is increased, but that an increase in the energy transferred to the material can sometimes actually decrease the flow rates through the sieve. Consequently, at any instant of time in the sieving process, there is an optimum level of vibrational energy that will maximize the flow rate. For the sieving of binary granular assemblies, the physics associated with the effects of energy transfer on the flow rates still applies. However, in these cases, the flows through the sieve are also profoundly affected by segregation that occurs while the particles reside on sieve before the pass through. For this reason, we also isolate the segregation process from the sieving process by considering the special case in which the holes in the vibrating sieve are too small to allow any particles to pass through. In this case, the results show that under most circumstances the region immediately adjacent to the vibrating surface will be populated almost entirely by the smaller particles or by the more dissipative particles if there is no size disparity, and that the reverse is true in a second region above the first.
26

Inclined load capacity of suction caisson in clay

Supachawarote, Chairat January 2007 (has links)
This thesis investigates the capacity and failure mode of suction caissons under inclined loading. Parametric finite element analyses have been carried out to investigate the effects of caisson geometry, loading angle, padeye depth (i.e. load attachment point), soil profile and caisson-soil interface condition. Displacement-controlled analyses were carried out to determine the ultimate limit state of the suction caissons under inclined load and the results presented as interaction diagrams in VH load space. VH failure interaction diagrams are presented for both cases where the caisson-soil interface is fully-bonded and where a crack is allowed to form along the side of the caisson. An elliptical equation is fitted to the normalised VH failure interaction diagram to describe the general trend in the case where the caisson-soil interface is fully-bonded. Parametric study reveals that the failure envelope in the fully-bonded case could be scaled down (contracted failure envelope) to represent the holding capacity when a crack is allowed to form. A stronger effect of crack on the capacity was observed in the lightly overconsolidated soil, compared to the normally consolidated soil. The sensitivity of caisson capacity to the changes in load attachment position or loading angle was quantified based on the load-controlled analyses. It was found that, for caisson length to diameter ratios of up to 5, the optimal centreline loading depth (i.e. where the caisson translates with no rotation) is in the range 0.65L to 0.7L in normally consolidated soil, but becomes shallower for the lightly overconsolidated soil profile where the shear strength profile is more uniform. The reduction of holding capacity when the padeye position is shifted from the optimal location was also quantified for normally consolidated and lightly overconsolidated soil profiles at loading angle of 30 [degrees]. Upper bound analyses were carried out to augment the finite element study. Comparison of holding capacity and accompanying failure mechanisms obtained from the finite element and upper bound methods are made. It was found that the upper bound generally overpredicted the inclined load capacity obtained from the finite element analyses especially for the shorter caisson considered in this study. A correction factor is introduced to adjust the upper bound results for the optimal condition. Comparisons of non-optimal capacity were also made and showed that the agreement between the upper bound and finite element analyses are sensitive to the change in the centreline loading depth when the caisson-soil interface is fully bonded, but less so when a crack forms.
27

Free-surface film flow of a suspension and a related concentration instability

Timberlake, Brian D. (Brian Davis) 01 April 2004 (has links)
Film flow of a suspension has been investigated both experimentally and theoretically. Gravity-driven free-surface inclined plane flow of a suspension of neutrally buoyant particles has been investigated using a stereoscopic particle imaging velocimetry technique. Particles have been shown to migrate away from the solid surface, and the film thickness has been shown to decrease as the fluid moves down the inclined plane. The free surface has been characterized using a light reflection technique, which shows that surface topography is affected by the inclination angle, and the particle concentration. This flow has been modeled based on a suspension normal stress approach. A boundary condition at the free surface has been examined, and model predictions have been compared with experimental results. The model predicts that the film thickness, relative to its initial value, will decrease with the bulk particle concentration. The thin film flow over the inner cylinder in partially filled Couette flow of a suspension has been experimentally investigated as well as modeled. Concentration bands have been shown to form under a variety of different fill fractions, bulk particle concentrations, inclination angles, ratio of inner to outer cylinder, and rotation rates of the inner cylinder. The banding phenomena ranges from a regime where bands are small, mobile and relatively similar in concentration to the bulk, to a regime where the concentration bands are larger, stationary, and where the space between them is completely devoid of particles. The role of the film thickness in the band formation process has been investigated, and has led to a model for the band formation process based on a difference in the rate that fluid can drain from height fluctuations relative to the particles.
28

An Electrically Active Microneedle Electroporation Array for Intracellular Delivery of Biomolecules

Choi, Seong-O 14 November 2007 (has links)
The objective of this research is the development of an electrically active microneedle array that can deliver biomolecules such as DNA and drugs to epidermal cells by means of electroporation. Properly metallized microneedles could serve as microelectrodes essential for electroporation. Furthermore, the close needle-to-needle spacing of microneedle electrodes provides the advantage of utilizing reduced voltage, which is essential for safety as well as portable applications, while maintaining the large electric fields required for electroporation. Therefore, microneedle arrays can potentially be used as part of a minimally invasive, highly-localized electroporation system for cells in the epidermis layer of the skin. This research consists of three parts: development of the 3-D microfabrication technology to create the microneedle array, fabrication and characterization of the microneedle array, and the electroporation studies performed with the microneedle array. A 3-D fabrication process was developed to produce a microneedle array using an inclined UV exposure technique combined with micromolding technology, potentially enabling low cost mass-manufacture. The developed technology is also capable of fabricating 3-D microstructures of various heights using a single mask. The fabricated microneedle array was then tested to demonstrate its feasibility for through-skin electrical and mechanical functionality using a skin insertion test. It was found that the microneedles were able to penetrate skin without breakage. To study the electrical properties of the array, a finite element simulation was performed to examine the electric field distribution. From these simulation results, a predictive model was constructed to estimate the effective volume for electroporation. Finally, studies to determine hemoglobin release from bovine red blood cells (RBC) and the delivery of molecules such as calcein and bovine serum albumin (BSA) into human prostate cancer cells were used to verify the electrical functionality of this device. This work established that this device can be used to lyse RBC and to deliver molecules, e.g. calcein, into cells, thus supporting our contention that this metallized microneedle array can be used to perform electroporation at reduced voltage. Further studies to show efficacy in skin should now be performed.
29

Comparison of a Slanted-Tooth See-Through Labyrinth Seal to a Straight-Tooth See-Through Labyrinth Seal for Rotordynamic Coefficients and Leakage

Mehta, Naitik 2012 May 1900 (has links)
This research compares the leakage and rotordynamic characteristics of a slanted-tooth labyrinth seal to a conventional straight-tooth labyrinth. Detailed results comparing the rotordynamic coefficients and leakage parameters of a slanted-tooth see-through labyrinth seal and a straight-tooth see-through labyrinth seal are presented. The straight-tooth labyrinth seal used in this research was originally tested by Arthur Picardo. The slanted-tooth labyrinth seal was designed and fabricated to be identical to the straight-tooth labyrinth seal in terms of pitch, depth, and the number of teeth. The angle of inclination of the teeth in the slanted-tooth labyrinth seal was chosen to be 65° from the normal axis. The seals were tested at an inlet pressure of 70 bar-a (1015 psi-a), pressure ratios of 0.4, 0.5, and 0.6, rotor speeds of 10,200, 15,350, and 20,200 rpm, and a radial clearance of 0.2 mm (8 mils). The experiments were carried out at zero, medium, and high inlet preswirl ratios. The experimental results show only minute differences in the rotordynamic coefficients between the two seals. But, the slanted-tooth labyrinth seal leaked approximately 10% less than the straight-tooth labyrinth seal. A study of prediction versus experimental data was done. XLlaby was used for prediction. XLlaby was developed for a straight-tooth labyrinth seal design and did not do a good job in predicting the rotordynamic coefficients and the leakage rate.
30

High-resolution discrete fracture network characterization using inclined coreholes in a Silurian dolostone aquifer in Guelph, Ontario

Munn, Jonathan 06 January 2012 (has links)
The transport and fate of contaminants in fractured sedimentary rock aquifers depends strongly on the nature and distribution of the fracture network. The current standard practice of using only vertical coreholes to characterize bedrock aquifers can result in significantly biased data that is insufficient for fracture orientation analysis. This study involves the addition of two inclined coreholes to supplement existing data from eleven vertical coreholes at a contaminated site in Guelph, Ontario to reduce the effects of this bias. A suite of high-resolution, depth discrete data collection methods including core logging, borehole geophysics, and hydraulic testing were conducted to determine fracture orientation and spacing as well as hydraulic aperture distributions. The results of the orientation analysis demonstrate that the inclined coreholes were more effective at sampling high-angled fractures than the vertical coreholes and were necessary to identify all three of the dominant fracture sets on the site. The fracture network properties from this study can be used as input parameters for static and dynamic discrete fracture network models to assess current and future risks to municipal supply wells.

Page generated in 0.0363 seconds