• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Newton's method for solving strongly regular generalized equation / Método de Newton para resolver equações generalizadas fortemente regulares

Silva, Gilson do Nascimento 13 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-22T20:23:25Z No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-23T11:30:21Z (GMT) No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-23T11:30:21Z (GMT). No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We consider Newton’s method for solving a generalized equation of the form f(x) + F(x) 3 0, where f : Ω → Y is continuously differentiable, X and Y are Banach spaces, Ω ⊆ X is open and F : X ⇒ Y has nonempty closed graph. Assuming strong regularity of the equation and that the starting point satisfies Kantorovich’s conditions, we show that the method is quadratically convergent to a solution, which is unique in a suitable neighborhood of the starting point. In addition, a local convergence analysis of this method is presented. Moreover, using convex optimization techniques introduced by S. M. Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), we prove a robust convergence theorem for inexact Newton’s method for solving nonlinear inclusion problems in Banach space, i.e., when F(x) = −C and C is a closed convex set. Our analysis, which is based on Kantorovich’s majorant technique, enables us to obtain convergence results under Lipschitz, Smale’s and Nesterov-Nemirovskii’s self-concordant conditions. / N´os consideraremos o m´etodo de Newton para resolver uma equa¸c˜ao generalizada da forma f(x) + F(x) 3 0, onde f : Ω → Y ´e continuamente diferenci´avel, X e Y s˜ao espa¸cos de Banach, Ω ⊆ X ´e aberto e F : X ⇒ Y tem gr´afico fechado n˜ao-vazio. Supondo regularidade forte da equa¸c˜ao e que o ponto inicial satisfaz as hip´oteses de Kantorovich, mostraremos que o m´etodo ´e quadraticamente convergente para uma solu¸c˜ao, a qual ´e ´unica em uma vizinhan¸ca do ponto inicial. Uma an´alise de convergˆencia local deste m´etodo tamb´em ´e apresentada. Al´em disso, usando t´ecnicas de otimiza¸c˜ao convexa introduzida por S. M. Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), provaremos um robusto teorema de convergˆencia para o m´etodo de Newton inexato para resolver problemas de inclus˜ao n˜ao–linear em espa¸cos de Banach, i.e., quando F(x) = −C e C ´e um conjunto convexo fechado. Nossa an´alise, a qual ´e baseada na t´ecnica majorante de Kantorovich, nos permite obter resultados de convergˆencia sob as condi¸c˜oes Lipschitz, Smale e Nesterov-Nemirovskii auto-concordante.

Page generated in 0.0916 seconds