Spelling suggestions: "subject:"bindependent component 2analysis"" "subject:"bindependent component 3analysis""
111 |
Independent component analysis of evoked potentials for the classification of psychiatric patients and normal controls / Ανάλυση ανεξάρτητων συνιστώσων προκλητών δυναμικών για ταξινόμηση ψυχιατρικών ασθενών και υγιών μαρτύρωνΚοψαύτης, Νικόλαος Ι. 18 February 2009 (has links)
The last twenty years presented increased interest for the study of cerebral processes caused by external events (stimuli). One of the most significant endogenous components of Evoked Potentials is the P600 component. The P600 component may be defined as the most positive peak in the time window between 500 and 800 msec after an eliciting stimulus. This component is thought to reflect the response selection stage of information processing. P600 component is usually less pronounced compared to other components, such as the N100 or the P300. Frequently the P600 component appears as a not-easily discernible secondary peak overlying the ascending negative-going slope of the P300 waveform. In our study we used ERP data from various groups of patients and healthy controls. Patients were recruited from the outpatient university clinic of Eginition Hospital of the University of Athens. The controls were recruited from hospital staff and local volunteer groups. The aim of the study is the implementation of classification systems for these groups, using P600 features. This is usually not achieved well using as features the ERPs amplitude and latency. So for that reason, in our study, we want to extract new features using advanced techniques for processing the original ERPs, such as the Independent Component Analysis (ICA) method. However as a precursor of ICA, is considered the Principal Component Analysis (PCA) method, which we used for comparison reasons to ICA.
In the application of ICA we achieve the decomposition of the recorded signals in ICs, supposing temporally independent components and propose ICs selection techniques in order to recompose the P600 component. The next stage was the use of a classification method based on the features extracted using the original data, data extracted through PCA processing and ICA-processed data. First we applied Kolmogorov-Smirnov test to check the normality of the distribution of the features, then we used the Logistic Regression method for classification and finally we have done two implementations of classification using Probabilistic Neural Networks. The first implementation was done with the creation of 15 features from the P600 peak amplitudes from the subjects’ data and the second implementation was done with the creation of four meta-features from the subjects’ P600 amplitude data.
The results show that the application of ICA, combined with the logistic regression classification technique, provides notable improvement, compared to the classification performance based on the original ERPs. The main merit of the application is that classification is based on single parameters, i.e. amplitude of the P600 component, or its latency or its termination latency, which are directly related to the brain mechanisms related to ERP generation and pathological processes. / Τα τελευταία 20 χρόνια παρουσιάζεται αυξημένο ενδιαφέρον για την μελέτη εγκεφαλικών επεξεργασιών που προκλήθηκαν από εξωτερικά γεγονότα (ερέθισμα). Ένα από τα πιο σημαντικά ενδογενή συστατικά των Προκλητών Δυναμικών είναι το συστατικό P600. Το συστατικό P600 μπορεί να οριστεί σαν η πιο θετική αιχμή στο χρονικό διάστημα μεταξύ 500 και 800 msec μετά από ένα εκλυτικό ερέθισμα. Το συστατικό αυτό θεωρείται ότι απεικονίζει το στάδιο επιλογής απόκρισης της επεξεργασίας πληροφορίας. Το συστατικό P600 είναι συνήθως λιγότερο έντονο συγκρίνοντας το με άλλα συστατικά, όπως το N100 ή το P300. Συχνά το συστατικό P600 εμφανίζεται ως μια δυσδιάκριτη δεύτερη αιχμή, επικαλύπτοντας την ανοδική αρνητική κλίση της κυματομορφής του P300. Στη μελέτη μας χρησιμοποιήσαμε δεδομένα ΠΔ από ποικίλες ομάδες ασθενών και υγιών μαρτύρων. Οι ασθενείς συλλέχθησαν από τη πανεπιστημιακή κλινική του Αιγηνήτειου Νοσοκομείου του Πανεπιστημίου Αθηνών. Οι υγιείς συλλέχθησαν από το προσωπικό του νοσοκομείου και ομάδες εθελοντών. Ο σκοπός της μελέτης είναι η εφαρμογή συστημάτων ταξινόμησης για αυτές τις ομάδες, χρησιμοποιώντας χαρακτηριστικά του P600. Αυτό συνήθως δεν επιτυγχάνεται καλά χρησιμοποιώντας σαν χαρακτηριστικά το πλάτος και τον λανθάνοντα χρόνο των ΠΔ. Για αυτό το λόγο, στην μελέτη μας, θέλουμε να εξάγουμε νέα χαρακτηριστικά χρησιμοποιώντας προηγμένες τεχνικές για επεξεργασία των αρχικών ΠΔ, όπως τη μέθοδο Ανάλυσης Ανεξαρτήτων Συνιστωσών (ICA). Εντούτοις ως πρόδρομο της ICA, θεωρείται η μέθοδος Ανάλυσης Κύριων Συνιστωσών (PCA), την οποία χρησιμοποιήσαμε για συγκριτικούς λόγους με την ICA.
Στην εφαρμογή της ICA προχωρήσαμε στην αποσύνθεση των καταγραφόμενων σημάτων σε Ανεξάρτητες Συνιστώσες και διερευνήσαμε τρεις τεχνικές επιλογής ανεξαρτήτων συνιστωσών μέσω των οποίων επανασυνθέσαμε το συστατικό P600. Το επόμενο βήμα ήταν η χρήση μεθόδου ταξινόμησης βασισμένης στα χαρακτηριστικά που εξάχθηκαν χρησιμοποιώντας τα αρχικά δεδομένα, τα δεδομένα με επεξεργασία PCA και τα δεδομένα με επεξεργασία ICA. Πρώτα εφαρμόσαμε το τεστ Kolmogorov-Smirnov για τον έλεγχο της κανονικότητας της κατανομής των χαρακτηριστικών, μετά χρησιμοποιήσαμε τη μέθοδο Λογαριθμικής Παλινδρόμησης (Logistic Regression) για ταξινόμηση και τελικά πραγματοποιήσαμε δύο εφαρμογές ταξινόμησης χρησιμοποιώντας Πιθανοκρατικά Νευρωνικά Δίκτυα (Probabilistic Neural Networks). Η πρώτη εφαρμογή έγινε με την δημιουργία 15 χαρακτηριστικών από τα πλάτη των αιχμών του P600 από τα δεδομένα των ομάδων και η δεύτερη εφαρμογή έγινε με την δημιουργία τεσσάρων μετά-χαρακτηριστικών από τα δεδομένα των πλατών των ομάδων.
Τα αποτελέσματα δείχνουν ότι η εφαρμογή της ICA, συνδυασμένη με την τεχνική ταξινόμησης λογαριθμικής παλινδρόμησης, παρέχει αξιοσημείωτη βελτίωση, συγκριτικά με την απόδοση ταξινόμησης βάση των αρχικών ΠΔ. Η κύρια αξία της εφαρμογής είναι ότι η ταξινόμηση πετυχαίνει ποσοστά μεγαλύτερα του 80% βασιζόμενη σε μία μόνο κάθε φορά παράμετρο, π.χ. το πλάτος του συστατικού P600, ή τον λανθάνοντα χρόνο του ή τον λανθάνοντα χρόνο τερματισμού του, οι οποίες σχετίζονται άμεσα με τους μηχανισμούς του εγκεφάλου σχετικούς με την παραγωγή ΠΔ και τις παθολογικές διαδικασίες.
|
112 |
Analyse en composantes indépendantes avec une matrice de mélange éparseBillette, Marc-Olivier 06 1900 (has links)
L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe. / Independent component analysis (ICA) is a method of statistical analysis where the main goal is to express the observed data (mixtures) in a linear transformation of latent variables (sources) believed to be non-Gaussian and mutually independent. In some applications, the mixtures can be grouped so that the mixtures belonging to the same group are function of the same sources. This implies that the coefficients of each column of the mixing matrix can be grouped according to these same groups and that all the coefficients of some of these groups are zero. In other words, we suppose that the mixing matrix is sparse per group. This assumption facilitates the interpretation and improves the accuracy of the ICA model. In this context, we propose to solve the problem of ICA with a sparse group mixing matrix by a method based on the adaptive group LASSO. The latter penalizes the 1-norm of the groups of coefficients with adaptive weights. In this thesis, we point out the utility of our method in applications in brain imaging, specifically in magnetic resonance imaging. Through simulations, we illustrate with an example the effectiveness of our method to reduce to zero the non-significant groups of coefficients within the mixing matrix. We also show that the accuracy of the proposed method is greater than the one of the maximum likelihood estimator with an adaptive LASSO penalization in the case where the mixing matrix is sparse per group.
|
113 |
Independent Component Analysis Enhancements for Source Separation in Immersive Audio EnvironmentsZhao, Yue 01 January 2013 (has links)
In immersive audio environments with distributed microphones, Independent Component Analysis (ICA) can be applied to uncover signals from a mixture of other signals and noise, such as in a cocktail party recording. ICA algorithms have been developed for instantaneous source mixtures and convolutional source mixtures. While ICA for instantaneous mixtures works when no delays exist between the signals in each mixture, distributed microphone recordings typically result various delays of the signals over the recorded channels. The convolutive ICA algorithm should account for delays; however, it requires many parameters to be set and often has stability issues. This thesis introduces the Channel Aligned FastICA (CAICA), which requires knowledge of the source distance to each microphone, but does not require knowledge of noise sources. Furthermore, the CAICA is combined with Time Frequency Masking (TFM), yielding even better SOI extraction even in low SNR environments. Simulations were conducted for ranking experiments tested the performance of three algorithms: Weighted Beamforming (WB), CAICA, CAICA with TFM. The Closest Microphone (CM) recording is used as a reference for all three. Statistical analyses on the results demonstrated superior performance for the CAICA with TFM. The algorithms were applied to experimental recordings to support the conclusions of the simulations. These techniques can be deployed in mobile platforms, used in surveillance for capturing human speech and potentially adapted to biomedical fields.
|
114 |
Détection et localisation tridimensionnelle par stéréovision d’objets en mouvement dans des environnements complexes : application aux passages à niveau / Detection and 3D localization of moving and stationary obstacles by stereo vision in complex environments : application at level crossingsFakhfakh, Nizar 14 June 2011 (has links)
La sécurité des personnes et des équipements est un élément capital dans le domaine des transports routiers et ferroviaires. Depuis quelques années, les Passages à Niveau (PN) ont fait l’objet de davantage d'attention afin d'accroître la sécurité des usagers sur cette portion route/rail considérée comme dangereuse. Nous proposons dans cette thèse un système de vision stéréoscopique pour la détection automatique des situations dangereuses. Un tel système permet la détection et la localisation d'obstacles sur ou autour du PN. Le système de vision proposé est composé de deux caméras supervisant la zone de croisement. Nous avons développé des algorithmes permettant à la fois la détection d'objets, tels que des piétons ou des véhicules, et la localisation 3D de ces derniers. L'algorithme de détection d'obstacles se base sur l'Analyse en Composantes Indépendantes et la propagation de croyance spatio-temporelle. L'algorithme de localisation tridimensionnelle exploite les avantages des méthodes locales et globales, et est composé de trois étapes : la première consiste à estimer une carte de disparité à partir d'une fonction de vraisemblance basée sur les méthodes locales. La deuxième étape permet d'identifier les pixels bien mis en correspondance ayant des mesures de confiances élevées. Ce sous-ensemble de pixels est le point de départ de la troisième étape qui consiste à ré-estimer les disparités du reste des pixels par propagation de croyance sélective. Le mouvement est introduit comme une contrainte dans l'algorithme de localisation 3D permettant l'amélioration de la précision de localisation et l'accélération du temps de traitement. / Within the past years, railways undertakings became interested in the assessment of Level Crossings (LC) safety. We propose in this thesis an Automatic Video-Surveillance system (AVS) at LC for an automatic detection of specific events. The system allows automatically detecting and 3D localizing the presence of one or more obstacles which are motionless at the level crossing. Our research aims at developing an AVS using the passive stereo vision principles. The proposed imaging system uses two cameras to detect and localize any kind of object lying on a railway level crossing. The cameras are placed so that the dangerous zones are well (fully) monitored. The system supervises and estimates automatically the critical situations by detecting objects in the hazardous zone defined as the crossing zone of a railway line by a road or path. The AVS system is used to monitor dynamic scenes where interactions take place among objects of interest (people or vehicles). After a classical image grabbing and digitizing step, the processing is composed of the two following modules: moving and stationary objects detection and 3-D localization. The developed stereo matching algorithm stems from an inference principle based on belief propagation and energy minimization. It takes into account the advantages of local methods for reducing the complexity of the inference step achieved by the belief propagation technique which leads to an improvement in the quality of results. The motion detection module is considered as a constraint which allows improving and speeding up the 3D localization algorithm.
|
115 |
Séparation de Sources Dans des Mélanges non-Lineaires / Blind Source Separation in Nonlinear MixturesEhsandoust, Bahram 30 April 2018 (has links)
La séparation aveugle de sources aveugle (BSS) est une technique d’estimation des différents signaux observés au travers de leurs mélanges à l’aide de plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien qu’il ait été démontré mathématiquement que pour des mélanges linéaires, sous des conditions faibles, des sources mutuellement indépendantes peuvent être estimées, il n’existe dans de résultats théoriques généraux dans le cas de mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats concernant des mélanges non linéaires spécifiques.Dans la présente étude, le problème est abordé en utilisant une nouvelle approche utilisant l’information temporelle des signaux. L’idée originale conduisant à ce résultat, est d’étudier le problème de mélanges linéaires, mais variant dans le temps, déduit du problème non linéaire initial par dérivation. Il est démontré que les contre-exemples déjà présentés, démontrant l’inefficacité de l’analyse par composants indépendants (ACI) pour les mélanges non-linéaires, perdent leur validité, considérant l’indépendance au sens des processus stochastiques, au lieu de l’indépendance au sens des variables aléatoires. Sur la base de cette approche, de bons résultats théoriques et des développements algorithmiques sont fournis. Bien que ces réalisations ne soient pas considérées comme une preuve mathématique de la séparabilité des mélanges non-linéaires, il est démontré que, compte tenu de quelques hypothèses satisfaites dans la plupart des applications pratiques, elles sont séparables.De plus, les BSS non-linéaires pour deux ensembles utiles de signaux sources sont également traités, lorsque les sources sont (1) spatialement parcimonieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières sont proposées pour ces deux cas, dont chacun a été largement étudié dans la littérature qui correspond à des propriétés réalistes pour de nombreuses applications pratiques.Dans le cas de processus Gaussiens, il est démontré que toutes les applications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée, cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonction préservant le caractère gaussiens des processus (signaux) est la fonction linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges polynomiaux de processus Gaussiens.En ce qui concerne les sources parcimonieuses, on montre qu’elles constituent des variétés distinctes dans l’espaces des observations et peuvent être séparées une fois que les variétés sont apprises. À cette fin, plusieurs problèmes d’apprentissage multiple ont été généralement étudiés, dont les résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés dans d’autres domaines nécessitant un problème similaire. / Blind Source Separation (BSS) is a technique for estimating individual source components from their mixtures at multiple sensors, where the mixing model is unknown. Although it has been mathematically shown that for linear mixtures, under mild conditions, mutually independent sources can be reconstructed up to accepted ambiguities, there is not such theoretical basis for general nonlinear models. This is why there are relatively few results in the literature in this regard in the recent decades, which are focused on specific structured nonlinearities.In the present study, the problem is tackled using a novel approach utilizing temporal information of the signals. The original idea followed in this purpose is to study a linear time-varying source separation problem deduced from the initial nonlinear problem by derivations. It is shown that already-proposed counter-examples showing inefficiency of Independent Component Analysis (ICA) for nonlinear mixtures, loose their validity, considering independence in the sense of stochastic processes instead of simple random variables. Based on this approach, both nice theoretical results and algorithmic developments are provided. Even though these achievements are not claimed to be a mathematical proof for the separability of nonlinear mixtures, it is shown that given a few assumptions, which are satisfied in most practical applications, they are separable.Moreover, nonlinear BSS for two useful sets of source signals is also addressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct BSS methods are proposed for these two cases, each of which has been widely studied in the literature and has been shown to be quite beneficial in modeling many practical applications.Concerning Gaussian processes, it is demonstrated that not all nonlinear mappings can preserve Gaussianity of the input. For example being restricted to polynomial functions, the only Gaussianity-preserving function is linear. This idea is utilized for proposing a linearizing algorithm which, cascaded by a conventional linear BSS method, separates polynomial mixturesof Gaussian processes.Concerning spatially sparse sources, it is shown that spatially sparsesources make manifolds in the observations space, and can be separated once the manifolds are clustered and learned. For this purpose, multiple manifold learning problem has been generally studied, whose results are not limited to the proposed BSS framework and can be employed in other topics requiring a similar issue.
|
116 |
Monitoramento e avaliação de desempenho de sistemas MPC utilizando métodos estatísticos multivariados / Monitoring and performance assessment of MPC system using multivariate statistical methodsFontes, Nayanne Maria Garcia Rego 30 January 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Monitoring of process control systems is extremely important for industries to ensure the quality of the product and the safety of the process. Predictive controllers, also known by MPC (Model Predictive Control), usually has a well performance initially. However, after a period, many factors contribute to the deterioration of its performance. This highlights the importance of monitoring the MPC control systems. In this work, tools based on multivariate statistical methods are discussed and applied to the problem of monitoring and Performance Assessment of predictive controllers. The methods presented here are: PCA (Principal Component Analysis) and ICA (Independent Component Analysis). Both are techniques that use data collected directly from the process. The first is widely used in Performance Assessment of predictive controllers. The second is a more recent technique that has arisen, mainly in order to be used in fault detection systems. The analyzes are made when applied in simulated processes characteristic of the petrochemical industry operating under MPC control. / O monitoramento de sistemas de controle de processos é extremamente importante no que diz respeito às indústrias, para garantir a qualidade do que é produzido e a segurança do processo. Os controladores preditivos, também conhecidos pela sigla em inglês MPC (Model Predictive Control), costumam ter um bom desempenho inicialmente. Entretanto, após um certo período, muitos fatores contribuem para a deterioração de seu desempenho. Isto evidencia a importância do monitoramento dos sistemas de controle MPC. Neste trabalho aborda-se ferramentas, baseada em métodos estatísticos multivariados, aplicados ao problema de monitoramento e avaliação de desempenho de controladores preditivos. Os métodos aqui apresentados são: o PCA (Análise por componentes principais) e o ICA (Análise por componentes independentes). Ambas são técnicas que utilizam dados coletados diretamente do processo. O primeiro é largamente utilizado na avaliação de desempenho de controladores preditivos. Já o segundo, é uma técnica mais recente que surgiu, principalmente, com o intuito de ser utilizado em sistemas de detecção de falhas. As análises são feitas quando aplicadas em processos simulados característicos da indústria petroquímica operando sob controle MPC.
|
117 |
Monitoramento e avaliação de desempenho de sistemas MPC utilizando métodos estatísticos multivariados / Monitoring and performance assessment of MPC system using multivariate statistical methodsFontes, Nayanne Maria Garcia Rego 30 January 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Monitoring of process control systems is extremely important for industries to ensure the quality of the product and the safety of the process. Predictive controllers, also known by MPC (Model Predictive Control), usually has a well performance initially. However, after a period, many factors contribute to the deterioration of its performance. This highlights the importance of monitoring the MPC control systems. In this work, tools based on multivariate statistical methods are discussed and applied to the problem of monitoring and Performance Assessment of predictive controllers. The methods presented here are: PCA (Principal Component Analysis) and ICA (Independent Component Analysis). Both are techniques that use data collected directly from the process. The first is widely used in Performance Assessment of predictive controllers. The second is a more recent technique that has arisen, mainly in order to be used in fault detection systems. The analyzes are made when applied in simulated processes characteristic of the petrochemical industry operating under MPC control. / O monitoramento de sistemas de controle de processos é extremamente importante no que diz respeito às indústrias, para garantir a qualidade do que é produzido e a segurança do processo. Os controladores preditivos, também conhecidos pela sigla em inglês MPC (Model Predictive Control), costumam ter um bom desempenho inicialmente. Entretanto, após um certo período, muitos fatores contribuem para a deterioração de seu desempenho. Isto evidencia a importância do monitoramento dos sistemas de controle MPC. Neste trabalho aborda-se ferramentas, baseada em métodos estatísticos multivariados, aplicados ao problema de monitoramento e avaliação de desempenho de controladores preditivos. Os métodos aqui apresentados são: o PCA (Análise por componentes principais) e o ICA (Análise por componentes independentes). Ambas são técnicas que utilizam dados coletados diretamente do processo. O primeiro é largamente utilizado na avaliação de desempenho de controladores preditivos. Já o segundo, é uma técnica mais recente que surgiu, principalmente, com o intuito de ser utilizado em sistemas de detecção de falhas. As análises são feitas quando aplicadas em processos simulados característicos da indústria petroquímica operando sob controle MPC.
|
118 |
Classificação de sinais EGG combinando Análise em Componentes Independentes, Redes Neurais e Modelo Oculto de MarkovSantos, Hallan Cosmo dos 26 May 2015 (has links)
Identify some digestive features in people through Electrogastrogram (EGG) is important because this is a cheap, non-invasive and less bother way than traditional endoscopy procedure. This work evaluates the learning behavior of Artificial Neural Networks (ANN) and Hidden Markov Model (HMM) on components extracted by Independent Component Analysis (ICA) algorithms. In this research, an experiment was made with statistical analysis that shows the relationship between neutral, negative or positive images and digestive reactions.
Training some classifiers with an EGG signal database, where the emotional states of individuals are known during processing, would it be possible to carry out the other way? Meaning, just from the EGG signal, estimate the emotional state of individuals. The initial challenge is to treat the EGG signal, which is mixed with the signals from other organs such as heart and lung. For this, the FastICA and Tensorial Methods algorithms were used, in order to produce a set of independent components, where one can identify the stomach component. Then, the EGG signal classification is performed through ANN and HMM models. The results have shown that extracting only the stomach signal component before the experiment can reduce the learning error rate in classifiers. / Identificar características digestivas de pessoas através da Eletrogastrografia (EGG) é importante pois esta costuma ser uma opção barata, não-invasiva e incomoda menos que o tradicional procedimento de Endoscopia. Este trabalho avalia o comportamento do aprendizado das Redes Neurais Artificiais (RNA) e do Modelo Oculto de Markov (HMM) diante de componentes extraídas por algoritmos de Análise de Componentes Independentes (ICA). Nesta pesquisa é realizado um experimento com análise estatística cujo objetivo apresenta a relação entre a visualização de imagens neutras, negativas ou positivas e as reações digestivas.
Treinando alguns classificadores com uma base de dados de sinais EGG, onde se conhece os estados emocionais dos indivíduos durante a sua obtenção, seria possível realizar o caminho inverso? Em outras palavras, apenas a partir dos sinais EGG, pode-se estimar o estado emocional de indivíduos? O desafio inicial é tratar o sinal EGG que encontra-se misturado aos sinais de outros órgãos como coração e pulmão. Para isto foi utilizado o algoritmo FastICA e os métodos tensoriais, com o intuito de produzir um conjunto de componentes independentes onde se possa identificar a componente do estômago. Em seguida, a classifição do sinal EGG é realizada por meio dos modelos de RNA e HMM. Os resultados mostraram que classificar apenas as componentes com mais presença da frequência do sinal do estômago pode reduzir a taxa de erro do aprendizado dos classificadores no experimento realizado.
|
119 |
Análise de componentes independentes aplicada à separação de sinais de áudio. / Independent component analysis applied to separation of audio signals.Fernando Alves de Lima Moreto 19 March 2008 (has links)
Este trabalho estuda o modelo de análise em componentes independentes (ICA) para misturas instantâneas, aplicado na separação de sinais de áudio. Três algoritmos de separação de misturas instantâneas são avaliados: FastICA, PP (Projection Pursuit) e PearsonICA; possuindo dois princípios básicos em comum: as fontes devem ser independentes estatisticamente e não-Gaussianas. Para analisar a capacidade de separação dos algoritmos foram realizados dois grupos de experimentos. No primeiro grupo foram geradas misturas instantâneas, sinteticamente, a partir de sinais de áudio pré-definidos. Além disso, foram geradas misturas instantâneas a partir de sinais com características específicas, também geradas sinteticamente, para avaliar o comportamento dos algoritmos em situações específicas. Para o segundo grupo foram geradas misturas convolutivas no laboratório de acústica do LPS. Foi proposto o algoritmo PP, baseado no método de Busca de Projeções comumente usado em sistemas de exploração e classificação, para separação de múltiplas fontes como alternativa ao modelo ICA. Embora o método PP proposto possa ser utilizado para separação de fontes, ele não pode ser considerado um método ICA e não é garantida a extração das fontes. Finalmente, os experimentos validam os algoritmos estudados. / This work studies Independent Component Analysis (ICA) for instantaneous mixtures, applied to audio signal (source) separation. Three instantaneous mixture separation algorithms are considered: FastICA, PP (Projection Pursuit) and PearsonICA, presenting two common basic principles: sources must be statistically independent and non-Gaussian. In order to analyze each algorithm separation capability, two groups of experiments were carried out. In the first group, instantaneous mixtures were generated synthetically from predefined audio signals. Moreover, instantaneous mixtures were generated from specific signal generated with special features, synthetically, enabling the behavior analysis of the algorithms. In the second group, convolutive mixtures were probed in the acoustics laboratory of LPS at EPUSP. The PP algorithm is proposed, based on the Projection Pursuit technique usually applied in exploratory and clustering environments, for separation of multiple sources as an alternative to conventional ICA. Although the PP algorithm proposed could be applied to separate sources, it couldnt be considered an ICA method, and source extraction is not guaranteed. Finally, experiments validate the studied algorithms.
|
120 |
EXTRAÇÃO DE SINAIS DE VOZ EM AMBIENTES RUIDOSOS POR DECOMPOSIÇÃO EM FUNÇÕES BASES ESTATISTICAMENTE INDEPENDENTES / EXTRATION OF VOICE SIGNALS IN NOISY ENVIRONMENTS FOR DECOMPOSITION IN FUNCTIONS STATISTICAL INDEPENDENT BASESAbreu, Natália Costa Leite 11 December 2003 (has links)
Made available in DSpace on 2016-08-17T14:52:55Z (GMT). No. of bitstreams: 1
Natalia Costa Leite Abreu.pdf: 841490 bytes, checksum: 00ff55b62f0819b502a66a2304564bf4 (MD5)
Previous issue date: 2003-12-11 / The constant search for the improvement and strengthening of the relationship
between humans and machines turning it more natural is common place. Consequently, the
recognition of speech will turn, easier and practical the handling of equipments supplied with
the capacity to understand the human speech. In this sense and with the use of the available
knowledge information in the literature as how the human brain processes informations, some
suggested methods try to simulate this ability in the computer, especially devoted to the
extraction of a speech signal of mixed sounds, attempting, for example to increase the
recognition and comprehension rate. The extraction of speech can be obtained by measures of
a single-channel or multiple the channels. In order to extract the speech in a single channel, it
is proposed here to use the speech characteristics introducing the concept of efficient
codification, that tries to imitate the way the auditory cortex gets information using the
method of Independent Component Analysis (ICA), getting the basis functions of the input
signals and retrieving the estimated signal even when we add interferences to it. Our
simulations also prove the efficiency of our method against reverberation effects and the
recovery of speech signal by the handling of basis function of other speech signals. This
technique can be used efficiently both to extract a single speech, as well as highlighting new
ways of approaching the speech/speaker recognition problem. / A constante busca para aperfeiçoar e estreitar o relacionamento entre homens e
máquinas, tornando-o mais natural, não é nenhuma novidade. Conseqüentemente, o
reconhecimento da voz possibilitará uma manipulação mais fácil e prática de equipamentos
dotados com a capacidade de compreender a fala humana. Neste sentido e utilizando-se dos
conhecimentos disponíveis na literatura de como o cérebro humano processa informações,
alguns métodos propostos procuram simular computacionalmente essa habilidade, voltados
principalmente à extração de um sinal de voz de uma mistura de sons, na tentativa de, por
exemplo, aumentar a taxa de reconhecimento e inteligibilidade. A extração da voz pode ser
obtida usando medidas de um único ou múltiplos canais. Para extrair uma voz em um único
canal, propomos usar as características da voz pelo conceito de codificação eficiente, que
procura imitar o modo como o córtex auditivo trata as informações, utilizando-se da técnica
de Análise de Componentes Independentes (ICA), obtendo as funções bases dos sinais de
entrada e recuperando o sinal estimado, mesmo quando são adicionadas interferências.
Através de simulações comprovamos também a eficiência da técnica usada, primeiro, na
recuperação de um sinal de voz com a utilização das funções bases de outro sinal e, segundo,
frente a efeitos de reverberação. Esta técnica pode ser usada para extrair uma única fala
eficazmente, como também prenuncia um modo novo de chegar ao problema de
reconhecimento da fala/orador.
|
Page generated in 0.0999 seconds