• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 30
  • 11
  • 11
  • 9
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 145
  • 41
  • 40
  • 40
  • 32
  • 31
  • 26
  • 25
  • 24
  • 22
  • 19
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Porovnání metod efektivní a funkční konektivity ve funkční magnetické rezonanci / A comparison of effective and functional connectivity methods in fMRI

Gajdoš, Martin January 2012 (has links)
Functional magnetic resonance imaging (fMRI) is recent important method, used in neuroimaging. The aim of this thesis is to develop software tool for comparison of two methods for functional and effective connectivity estimation. In this thesis are described the basics of magnetic resonance imaging, fMRI, basic terms of fMRI experiments and generally are described methods of functional and effective connectivity. Then are more detailed mentioned methods of dynamic causal modeling (DCM), Granger causal modeling (GCM) and independent component analysis (ICA). Practical implementation of DCM in toolbox SMP and ICA in toolbox GIFT is also mentioned. In purpose to describe behavior of DCM and GCM in dependence on several parameters are performed Monte Carlo simulations. Then the concept and realization of software tool for simulating connectivity and comparison of DCM and GCM are described. Finally results of DCM and GCM comparison and results of Monte Carlo simulations are discussed.
142

Nedourčená slepá separace zvukových signálů / Underdetermined Blind Audio Signal Separation

Čermák, Jan January 2008 (has links)
We often have to face the fact that several signals are mixed together in unknown environment. The signals must be first extracted from the mixture in order to interpret them correctly. This problem is in signal processing society called blind source separation. This dissertation thesis deals with multi-channel separation of audio signals in real environment, when the source signals outnumber the sensors. An introduction to blind source separation is presented in the first part of the thesis. The present state of separation methods is then analyzed. Based on this knowledge, the separation systems implementing fuzzy time-frequency mask are introduced. However these methods are still introducing nonlinear changes in the signal spectra, which can yield in musical noise. In order to reduce musical noise, novel methods combining time-frequency binary masking and beamforming are introduced. The new separation system performs linear spatial filtering even if the source signals outnumber the sensors. Finally, the separation systems are evaluated by objective and subjective tests in the last part of the thesis.
143

Assessment of blind source separation techniques for video-based cardiac pulse extraction

Wedekind, Daniel, Trumpp, Alexander, Gaetjen, Frederik, Rasche, Stefan, Matschke, Klaus, Malberg, Hagen, Zaunseder, Sebastian 09 September 2019 (has links)
Blind source separation (BSS) aims at separating useful signal content from distortions. In the contactless acquisition of vital signs by means of the camera-based photoplethysmogram (cbPPG), BSS has evolved the most widely used approach to extract the cardiac pulse. Despite its frequent application, there is no consensus about the optimal usage of BSS and its general benefit. This contribution investigates the performance of BSS to enhance the cardiac pulse from cbPPGs in dependency to varying input data characteristics. The BSS input conditions are controlled by an automated spatial preselection routine of regions of interest. Input data of different characteristics (wavelength, dominant frequency, and signal quality) from 18 postoperative cardiovascular patients are processed with standard BSS techniques, namely principal component analysis (PCA) and independent component analysis (ICA). The effect of BSS is assessed by the spectral signal-tonoise ratio (SNR) of the cardiac pulse. The preselection of cbPPGs, appears beneficial providing higher SNR compared to standard cbPPGs. Both, PCA and ICA yielded better outcomes by using monochrome inputs (green wavelength) instead of inputs of different wavelengths. PCA outperforms ICA for more homogeneous input signals. Moreover, for high input SNR, the application of ICA using standard contrast is likely to decrease the SNR.
144

Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική / Advanced data processing and classification techniques for diagnosis methods. Application in obstetrics

Γεωργούλας, Γεώργιος Κ. 13 February 2009 (has links)
Αντικείμενο της διατριβής ήταν η ανάπτυξη υπολογιστικών μεθόδων διάγνωσης και εκτίμησης της κατάστασης της υγείας του εμβρύου. Οι προτεινόμενες μεθοδολογίες αναλύουν και εξάγουν πληροφορίες από το σήμα της ΕΚΣ καθώς το συγκεκριμένο σήμα αποτελεί ένα από τα λιγοστά διαθέσιμα εργαλεία για την εκτίμηση της οξυγόνωσης του εμβρύου και της αξιολόγησης της κατάστασης της υγείας του κατά τη διάρκεια του τοκετού. Για την αξιολόγηση των μεθόδων εξετάστηκε η συσχέτιση της Εμβρυϊκής Καρδιακής Συχνότητας (ΕΚΣ) με βραχυπρόθεσμες αξιόπιστες ενδείξεις για την κατάσταση του εμβρύου και πιο συγκεκριμένα χρησιμοποιήθηκε η συσχέτιση της τιμής του pH του αίματος του εμβρύου η οποία αποτελεί μια έμμεση ένδειξη για την ανάπτυξη υποξίας κατά τη διάρκεια του τοκετού. Στα πλαίσια της διατριβής χρησιμοποιήθηκε για πρώτη φορά η μέθοδος της ανάλυσης σε ανεξάρτητες συνιστώσες για την εξαγωγή χαρακτηριστικών από το σήμα της ΕΚΣ. Επίσης προτάθηκαν και χρησιμοποιήθηκαν Κρυφά Μοντέλα Markov σε μια προσπάθεια να «συλληφθεί» η χρονική εξέλιξη του φαινομένου της μεταβολής της κατάστασης του εμβρύου. Επιπλέον προτάθηκαν νέα χαρακτηριστικά εξαγόμενα με τη χρήση του Διακριτού Μετασχηματισμού Κυματιδίου. Με χρήση μιας υβριδική μέθοδος, που βασίζεται στη χρήση εξελικτικής γραμματικής «κατασκευάστηκαν» νέα χαρακτηριστικά παραγόμενα από τα χαρακτηριστικά που είχαν ήδη εξαχθεί με συμβατικές μεθόδους. Επιπρόσθετα στα πλαίσια της διατριβής χρησιμοποιήθηκαν για πρώτη φορά (και η μόνη μέχρι στιγμής) μηχανές διανυσμάτων υποστήριξης για την ταξινόμηση και προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για τη ρύθμιση των παραμέτρων τους. Τέλος προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για την εκπαίδευση μιας νέας οικογένειας νευρωνικών δικτύων, των νευρωνικών δικτύων κυματιδίου. Μέσα από τα πειράματα τα οποία διεξήγαμε καταφέραμε να δείξουμε ότι τα δεδομένα της ΕΚΣ διαθέτουν σημαντική πληροφορία η οποία με τη χρήση κατάλληλων προηγμένων μεθόδων επεξεργασίας και ταξινόμησης μπορεί να συσχετιστεί με την τιμή του pH του εμβρύου, κάτι το οποίο θεωρούνταν ουτοπικό στη δεκαετία του 90. / This Dissertation dealt with the development of computational methods for the diagnosis and estimation of fetal condition. The proposed methods analyzed and extracted information from the Fetal Heart Rate (FHR) signal, since this is one of the few available tools for the estimation of fetal oxygenation and the assessment of fetal condition during labor. For the evaluation of the proposed methods the correlation of the FHR signal with short term indices were employed and to be more specific, its correlation with the pH values of fetal blood, which is an indirect sign of the development of fetal hypoxia during labor. In the context of this Dissertation, Independent Component Analysis (ICA) for feature extraction from the FHR signal was used for the first time. Moreover we used Hidden Markov Models in an attempt to “capture” the evolution in time of the fetal condition. Furthermore, new features based on the Discrete Wavelet Transform were proposed and used. Using a new hybrid method based on grammatical evolution new features were constructed based on already extracted features by conventional methods. Moreover, for the first (and only) time, Support Vector Machine (SVM) classifiers were employed in the field of FHR processing and the Particle Swarm Optimization (PSO) method was proposed for tuning their parameters. Finally, a new family of neural networks, the Wavelet Neural Networks (WNN) was proposed and used, trained using the PSO method. By conducting a number of experiments we managed to show that the FHR signal conveys valuable information, which by the use of advanced data processing and classification techniques can be associated with fetal pH, something which was not regarded feasible during the 90’s.
145

Competition improves robustness against loss of information

Kolankeh, Arash Kermani, Teichmann, Michael, Hamker, Fred H. 21 July 2015 (has links)
A substantial number of works have aimed at modeling the receptive field properties of the primary visual cortex (V1). Their evaluation criterion is usually the similarity of the model response properties to the recorded responses from biological organisms. However, as several algorithms were able to demonstrate some degree of similarity to biological data based on the existing criteria, we focus on the robustness against loss of information in the form of occlusions as an additional constraint for better understanding the algorithmic level of early vision in the brain. We try to investigate the influence of competition mechanisms on the robustness. Therefore, we compared four methods employing different competition mechanisms, namely, independent component analysis, non-negative matrix factorization with sparseness constraint, predictive coding/biased competition, and a Hebbian neural network with lateral inhibitory connections. Each of those methods is known to be capable of developing receptive fields comparable to those of V1 simple-cells. Since measuring the robustness of methods having simple-cell like receptive fields against occlusion is difficult, we measure the robustness using the classification accuracy on the MNIST hand written digit dataset. For this we trained all methods on the training set of the MNIST hand written digits dataset and tested them on a MNIST test set with different levels of occlusions. We observe that methods which employ competitive mechanisms have higher robustness against loss of information. Also the kind of the competition mechanisms plays an important role in robustness. Global feedback inhibition as employed in predictive coding/biased competition has an advantage compared to local lateral inhibition learned by an anti-Hebb rule.

Page generated in 0.0938 seconds