Spelling suggestions: "subject:"bindependent component 2analysis (ICA)"" "subject:"bindependent component 3analysis (ICA)""
21 |
Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική / Advanced data processing and classification techniques for diagnosis methods. Application in obstetricsΓεωργούλας, Γεώργιος Κ. 13 February 2009 (has links)
Αντικείμενο της διατριβής ήταν η ανάπτυξη υπολογιστικών μεθόδων διάγνωσης και εκτίμησης της κατάστασης της υγείας του εμβρύου. Οι προτεινόμενες μεθοδολογίες αναλύουν και εξάγουν πληροφορίες από το σήμα της ΕΚΣ καθώς το συγκεκριμένο σήμα αποτελεί ένα από τα λιγοστά διαθέσιμα εργαλεία για την εκτίμηση της οξυγόνωσης του εμβρύου και της αξιολόγησης της κατάστασης της υγείας του κατά τη διάρκεια του τοκετού. Για την αξιολόγηση των μεθόδων εξετάστηκε η συσχέτιση της Εμβρυϊκής Καρδιακής Συχνότητας (ΕΚΣ) με βραχυπρόθεσμες αξιόπιστες ενδείξεις για την κατάσταση του εμβρύου και πιο συγκεκριμένα χρησιμοποιήθηκε η συσχέτιση της τιμής του pH του αίματος του εμβρύου η οποία αποτελεί μια έμμεση ένδειξη για την ανάπτυξη υποξίας κατά τη διάρκεια του τοκετού.
Στα πλαίσια της διατριβής χρησιμοποιήθηκε για πρώτη φορά η μέθοδος της ανάλυσης σε ανεξάρτητες συνιστώσες για την εξαγωγή χαρακτηριστικών από το σήμα της ΕΚΣ. Επίσης προτάθηκαν και χρησιμοποιήθηκαν Κρυφά Μοντέλα Markov σε μια προσπάθεια να «συλληφθεί» η χρονική εξέλιξη του φαινομένου της μεταβολής της κατάστασης του εμβρύου. Επιπλέον προτάθηκαν νέα χαρακτηριστικά εξαγόμενα με τη χρήση του Διακριτού Μετασχηματισμού Κυματιδίου. Με χρήση μιας υβριδική μέθοδος, που βασίζεται στη χρήση εξελικτικής γραμματικής «κατασκευάστηκαν» νέα χαρακτηριστικά παραγόμενα από τα χαρακτηριστικά που είχαν ήδη εξαχθεί με συμβατικές μεθόδους. Επιπρόσθετα στα πλαίσια της διατριβής χρησιμοποιήθηκαν για πρώτη φορά (και η μόνη μέχρι στιγμής) μηχανές διανυσμάτων υποστήριξης για την ταξινόμηση και προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για τη ρύθμιση των παραμέτρων τους. Τέλος προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για την εκπαίδευση μιας νέας οικογένειας νευρωνικών δικτύων, των νευρωνικών δικτύων κυματιδίου.
Μέσα από τα πειράματα τα οποία διεξήγαμε καταφέραμε να δείξουμε ότι τα δεδομένα της ΕΚΣ διαθέτουν σημαντική πληροφορία η οποία με τη χρήση κατάλληλων προηγμένων μεθόδων επεξεργασίας και ταξινόμησης μπορεί να συσχετιστεί με την τιμή του pH του εμβρύου, κάτι το οποίο θεωρούνταν ουτοπικό στη δεκαετία του 90. / This Dissertation dealt with the development of computational methods for the diagnosis and estimation of fetal condition. The proposed methods analyzed and extracted information from the Fetal Heart Rate (FHR) signal, since this is one of the few available tools for the estimation of fetal oxygenation and the assessment of fetal condition during labor. For the evaluation of the proposed methods the correlation of the FHR signal with short term indices were employed and to be more specific, its correlation with the pH values of fetal blood, which is an indirect sign of the development of fetal hypoxia during labor.
In the context of this Dissertation, Independent Component Analysis (ICA) for feature extraction from the FHR signal was used for the first time. Moreover we used Hidden Markov Models in an attempt to “capture” the evolution in time of the fetal condition. Furthermore, new features based on the Discrete Wavelet Transform were proposed and used. Using a new hybrid method based on grammatical evolution new features were constructed based on already extracted features by conventional methods. Moreover, for the first (and only) time, Support Vector Machine (SVM) classifiers were employed in the field of FHR processing and the Particle Swarm Optimization (PSO) method was proposed for tuning their parameters. Finally, a new family of neural networks, the Wavelet Neural Networks (WNN) was proposed and used, trained using the PSO method.
By conducting a number of experiments we managed to show that the FHR signal conveys valuable information, which by the use of advanced data processing and classification techniques can be associated with fetal pH, something which was not regarded feasible during the 90’s.
|
22 |
A Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision and Machine LearningVasilescu, M. Alex O. 09 June 2014 (has links)
This thesis introduces a multilinear algebraic framework for computer graphics, computer vision, and machine learning, particularly for the fundamental purposes of image synthesis, analysis, and recognition. Natural images result from the multifactor interaction between the imaging process, the scene illumination, and the scene geometry. We assert that a principled mathematical approach to disentangling and explicitly representing these causal factors, which are essential to image formation, is through numerical multilinear algebra, the algebra of higher-order tensors.
Our new image modeling framework is based on(i) a multilinear generalization of principal components analysis (PCA), (ii) a novel multilinear generalization of independent components analysis (ICA), and (iii) a multilinear projection for use in recognition that maps images to the multiple causal factor spaces associated with their formation. Multilinear PCA employs a tensor extension of the conventional matrix singular value decomposition (SVD), known as the M-mode SVD, while our multilinear ICA method involves an analogous M-mode ICA algorithm.
As applications of our tensor framework, we tackle important problems in computer graphics, computer vision, and pattern recognition; in particular, (i) image-based rendering, specifically introducing the multilinear synthesis of images of textured surfaces under varying view and illumination conditions, a new technique that we call
``TensorTextures'', as well as (ii) the multilinear analysis and recognition of facial images under variable face shape, view, and illumination conditions, a new technique that we call ``TensorFaces''. In developing these applications, we introduce a multilinear image-based rendering algorithm and a multilinear appearance-based recognition algorithm. As a final, non-image-based application of our framework, we consider the analysis, synthesis and recognition of human motion data using multilinear methods, introducing a new technique that we call ``Human Motion Signatures''.
|
23 |
A Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision and Machine LearningVasilescu, M. Alex O. 09 June 2014 (has links)
This thesis introduces a multilinear algebraic framework for computer graphics, computer vision, and machine learning, particularly for the fundamental purposes of image synthesis, analysis, and recognition. Natural images result from the multifactor interaction between the imaging process, the scene illumination, and the scene geometry. We assert that a principled mathematical approach to disentangling and explicitly representing these causal factors, which are essential to image formation, is through numerical multilinear algebra, the algebra of higher-order tensors.
Our new image modeling framework is based on(i) a multilinear generalization of principal components analysis (PCA), (ii) a novel multilinear generalization of independent components analysis (ICA), and (iii) a multilinear projection for use in recognition that maps images to the multiple causal factor spaces associated with their formation. Multilinear PCA employs a tensor extension of the conventional matrix singular value decomposition (SVD), known as the M-mode SVD, while our multilinear ICA method involves an analogous M-mode ICA algorithm.
As applications of our tensor framework, we tackle important problems in computer graphics, computer vision, and pattern recognition; in particular, (i) image-based rendering, specifically introducing the multilinear synthesis of images of textured surfaces under varying view and illumination conditions, a new technique that we call
``TensorTextures'', as well as (ii) the multilinear analysis and recognition of facial images under variable face shape, view, and illumination conditions, a new technique that we call ``TensorFaces''. In developing these applications, we introduce a multilinear image-based rendering algorithm and a multilinear appearance-based recognition algorithm. As a final, non-image-based application of our framework, we consider the analysis, synthesis and recognition of human motion data using multilinear methods, introducing a new technique that we call ``Human Motion Signatures''.
|
Page generated in 0.1148 seconds