Spelling suggestions: "subject:"indoor air."" "subject:"lndoor air.""
201 |
Evaluation of Indoor Air Quality Parameters and Airborne Fungal Spore Concentrations by Season and Type of HVAC System in a School BuildingMcLeod, Jeffrey D. 18 June 2008 (has links)
No description available.
|
202 |
REPORT ON AN INTERNSHIP WITH THE FORT WAYNE-ALLEN COUNTY DEPARTMENT OF HEALTH, FORT WAYNE, INDIANASanders, Jana Farrell 20 April 2004 (has links)
No description available.
|
203 |
A Novel, Periodic Sampling Method to Assess Airborne Bacteria PopulationsChatterjee, Kanistha January 2011 (has links)
No description available.
|
204 |
Correction model based ANN modeling approach for the estimation of Radon concentrations in OhioYerrabolu, Pavan 27 September 2012 (has links)
No description available.
|
205 |
Efficiency of Portable HEPA Air Purifiers against Traffic Related Ultrafine ParticlesPeck, Ryan L. 11 September 2015 (has links)
No description available.
|
206 |
The Impact of an Urban Intervention to Mediate Indoor Environmental Hazards on Asthma Outcomes in ChildrenSweet, Laura Louise 27 August 2012 (has links)
No description available.
|
207 |
Home Environments and Allergen Avoidance Practices in a Hot, Humid ClimateKutintara, Benjamas 30 May 2002 (has links)
The purpose of the study was to examine home conditions, housing satisfactions, and allergen avoidance practices of people with allergic rhinitis, focusing on female patients who lived in an urban area in a hot, humid climate. The Morris and Winter theory of housing adjustment provides a theoretical base for this study. Nine hypotheses were tested to investigate interrelationships among home conditions, housing satisfaction in terms of health issues, allergen avoidance practices, and age. A sample of 41 female allergy patients aged 20 to 77 years completed a screening questionnaire and an in-depth survey questionnaire. The researcher visited their dwellings to conduct home observations and to take photos.Dust mite allergens were reported as the most common allergy triggers. Presence of cockroaches, presence of furry pets outdoors, molds in bathrooms, and molds in kitchens were the most common problematic home conditions. Open shelves, bookcases, drapes, horizontal blinds, and foam rubber pillows were the most common allergy related items found in respondents' bedrooms. Concerning health issues, the majority of the respondents were satisfied with their homes. Allergen avoidance practices were not followed regularly, particularly, using allergen-proof pillowcases and sheets, washing bedding in hot water, wearing a particle mask when vacuuming, using an exhaust fan, an air cleaner, a dehumidifier, and cockroach traps. The respondents who received suggestions from doctors were more likely to follow allergen avoidance practices than those who did not receive suggestions.The result shows a significant negative relationship between problematic home conditions and housing satisfaction in terms of health issues. A significant negative relationship between age and allergen avoidance practices was found. Older sufferers were less likely to use allergen-proof products. They also lived in older homes that were more likely to have allergy related conditions. The most common obstacles that prevented respondents from improving their homes in order to avoid allergens were cost of products, emotional attachment to pets, not having time to improve homes, and procrastination. Based on these findings, design recommendations, home maintenance recommendations, and lifestyle practice recommendations were developed. / Ph. D.
|
208 |
Assessing Human Exposure to Emissions from Ultrasonic HumidifiersYao, Wenchuo 14 September 2021 (has links)
Portable ultrasonic humidifiers add moisture into room air, but they simultaneously add exposure risks of aerosolized metals from drinking water used as fill water. The inhalation exposure from emitted metals can be overlooked, and thus, co-exposure of inhalation and ingestion and co-exposure to multiple inorganic metals is investigated.
The objectives of this work are: 1) predict airborne metal concentrations and particle sizes in four realistic room scenarios (33 m3 small or 72 m3 large, with varying ventilation rates from 0.2/hr -1.5/hr), and the investigated metals are arsenic, cadmium, chromium, copper, lead, and manganese; 2) characterize exposure doses and consequent risks for adults and 0.25, 1, 2.5, and 6 yr old children, when using identical drinking water ingested and as fill water, including inhalation of fine, respirable particles generated at the frequency of 8 hrs/day (equals 121.67 days/yr) and daily ingestion, under four realistic room scenarios. The risk assessment includes non-cancer [calculation of average daily dose (ADD) and hazard quotient (HQ)] and cancer risk evaluation; 3) quantify deposition fraction and deposited doses of multiple metals in human adult's and children's respiratory tract, using multi-path particle dosimetry (MPPD) model.
Results show airborne-particle-bound metal concentrations increase proportionally with water metals, and a poorly ventilated room causes greater exposure. Ingestion ADDs are 2 magnitudes higher than inhalation ADD, at identical water metal concentrations and daily exposure frequency. However, in the worse-case scenario of 33 m3 small room with low air exchange rate, the consequent inhalation HQs are all greater than 1 for children and adults, except for lead, indicating significant non-cancer risks when exposed to humidifier particles under the worse-case scenario. The cancer risks for arsenic, cadmium, chromium, and lead metals reveal are greater than acceptable one case in a million population (1E-6) produced from inhalation of the humidifier emitted metal-containing particles only. The MPPD model results indicate inhaled metal-containing airborne particles deposit primarily in head and pulmonary regions, and a greater dose (unit in µg/kg body weight/day) deposits in children than adults.
Inhalation of ultrasonic humidifier aerosolized metals results in additional, and potentially greater risks (indicated by HQinhalation >1, and greater deposited dose) than ingestion at the same aqueous metal concentration, especially for children. Room conditions (i.e. volume and ventilation) influence risks. Both inhalation and ingestion exposures require consideration for eliminating multiple metal exposures and health-based environmental policy making. Consumers should be aware that they may be degrading their indoor air quality by using ultrasonic humidifiers even when filling with acceptable water quality for drinking. / Doctor of Philosophy / The purpose of this work is to investigate the exposure from use of ultrasonic humidifiers filled with drinking water containing inorganic metals. Typical exposure pathway of drinking water metals is ingestion. However, inhalation of aerosolized metals can cause undesirable health effects towards metal exposure, when fill water of ultrasonic humidifiers is the same drinking water, and the inhalation of aerosolized metals exposure pathway can be overlooked. Emitted airborne particles are composed of soluble metals in drinking water, and are respirable with diameters between 100-200 nm. PM2.5 (particulate matter with aerodynamic under 2.5 µm) concentrations increase from approximately 2 µg/m3 to hundreds of µg/m3 in a common-sized room, exceeding the USEPA's regulatory level of 15 µg/m3 for ambient air PM2.5. The resulting air metal concentrations increase with increasing metals in the fill water, and/or lower ventilation rates in a household room. In addition, children receive greater average daily exposure doses than adults (i.e. average daily dose and deposited dose, in unit of µg/kg body weight/day), when assuming daily inhalation exposure of 8 hr/day and daily ingestion exposure. The ingestion doses from various metals are greater than inhalation doses, however, the inhalation risks may be greater for certain metals than ingestion. Even when using acceptable drinking water quality that meets regulations for metals, the indoor air quality is still degraded and can pose adverse health effects. In conclusion, the dissertation work presents a framework to estimate risks developed from multi-media and single or multi-metals exposure. The addition from inhalation of aerosolized metals in drinking water should be considered in an overall risk assessment, especially for the susceptible population of young children. Consumers should be aware that they may be degrading their indoor air quality by using ultrasonic humidifiers even when filling with acceptable water quality for drinking.
|
209 |
Study of Linkage between Indoor Air Quality along with Indoor Activities and the Severity of Asthma Symptoms in Asthma PatientsJohn, Reena January 2023 (has links)
Asthma, a chronic respiratory disease affecting millions of people worldwide, can vary in severity depending on individual triggers such as Carbon Dioxide, Particulate Matter, dust mites, tobacco smoke, and indoor household activities such as cooking, cleaning, use of heating, and window opening, which can have a negative impact on indoor air quality (IAQ) and exacerbate asthma symptoms. Investigating the relationship between IAQ and asthma severity, a case study was conducted on five asthmatic participants from Bradford, UK. IAQ was measured using IoT indoor air quality monitoring devices. Indoor activities were recorded using a daily household activities questionnaire, and asthma severity was assessed using the Asthma Control Questionnaire (ACQ). Machine learning prediction models were used to analyse various IAQ parameters, such as particulate matter, carbon dioxide, and humidity levels, to identify the most significant predictors of asthma severity with IAQ. The study aimed to develop targeted interventions to improve IAQ and reduce the burden of asthma. Results showed that higher asthma severity scores were associated with increased indoor activity and higher levels of indoor air pollution. Some interventions were implemented to improve ventilation hours, significantly improving IAQ and reducing asthma symptoms, particularly those with more severe asthma. The findings indicate that interventions targeting IAQ, and indoor activities can effectively reduce asthma severity, with up to a 60% reduction in symptoms for asthma patients.
|
210 |
DOMESTIC WEATHER : Researching the potential of convective ventilation strategies in the setting ofa northern climate.Adler, Henric January 2024 (has links)
The primary objective of ventilation in a building is to ensure that the Indoor Air Quality (IAQ), together with the heating system, keep the thermal climate at an acceptable level. Meaning the deployment of ventilation air at the appropriate temperature rate supplied to meet the thermal climate into the parts of the building where residents reside. In Sweden, the two most commonly used ventilation strategies are stack ventilation and forced extract ventilation. Both methods utilize exhaust openings in kitchens and sanitary areas, while fresh air is drawn from either permeable external walls or through inlets located near windows and as distant as possible from the exhaust openings (Manz & Huber, 2000). Stack-effect ventilation, also known as buoyancy ventilation, utilizes convective forces. Thus, vertical interior openings such as stairways or atriums play an essential role in the distribution of air and its suitability. Utilizing additional building elements such as a chimney enhances the stack-effect ventilation by elevating the height of the “vertical core” of warm air within the structure. The disparity in density (the difference in temperature between hot and cold) increases as a result of the amplification of pressure disparities (Liu et al., 2010). Hence, larger differences in pressure between the inside and outside will result in an increased driving force for the stack effect by enhancing the convective currents. The principle operates by drawing cooler air from the exterior,generally from the bottom or sides of the building, into the building. The air is then gradually heated and ascends through the vertical core due to convective forces, before being ultimately discharged through the chimney (Savin & Jardinier, 2009). The architectural proposal seeks to adhere to sustainable building development by employing deliberate steps that incorporate a combination of principles and strategies based on the theory of convection. In order to acquire knowledge and validation, an extensive investigation of case studies was carried out, with the works of Philippe Rahm serving as the fundamental basis for further development. Furthermore, a laboratory environment was established to conduct physical tests as well as virtual simulations (CFD) in order to gain deeper understanding and accuracy regarding the relationship between convective forces and geometry. The thesis set out to place a bet based on the notion of consciousness, in terms of implementation of chosen principles, using materials with low embodied carbon, and employing a strategic geometric relationship. This approach enabled the design of an architectural proposal that is both responsive and educative, while also addressing the existing knowledge gap between different professions.
|
Page generated in 0.0375 seconds