Spelling suggestions: "subject:"conduction generator"" "subject:"1induction generator""
61 |
Controle preditivo robusto tipo Finite Control Set aplicado ao controle das potências do gerador de indução duplamente alimentado. / Robust predictive Finite Control Set applied to powers control of doubly fed induction induction generator.Oliveira, André Luiz de 14 March 2019 (has links)
Esta tese de doutorado propõe um controlador preditivo robusto tipo finite control set aplicado ao controle das potências do gerador de indução duplamente alimentado. Desta forma, a proposta possui dois membros do vetor tensão predita do rotor, sendo que o primeiro termo calcula a tensão considerando as referências de corrente do rotor e o segundo é projetado considerando os erros devido à estimação dos parâmetros da máquina. Os referidos erros devido a variações de parâmetros são modelados como alterações na corrente do rotor. O vetor de tensão a ser fornecido ao rotor da máquina é selecionado através da minimização de uma função custo. Os resultados obtidos na simulação computacional e em bancada experimental confirmam o desempenho do controlador proposto. / This Ph.D. thesis proposes a robust predictive controller type finite control set applied to control of the powers at doubly fed induction generator. In this way, the proposal has two members of the predicted voltage vector of the rotor, the first term calculating the voltage considering the rotor references current and the second one is projected considering the errors due to the estimation of the machine parameters. The errors due to variations parameter are modeled as changes in the rotor current. The voltage vector to be supplied to the machine rotor is selected by minimizing a cost function. The results obtained in the computational simulation and experimental bench confirm the performance of the proposed controller.
|
62 |
Wind Farms Influence on Stability in an area with High Concentration of Hydropower PlantsEngström, Staffan January 2011 (has links)
The number of large-scale wind farms integrated to the power system in Sweden is increasing. Two generator concepts that are widely used are Doubly-Fed Induction Generators (DFIG) and Full Power Converters (FPC). The study is of a quantitative character and the aim of the Master thesis is to compare DFIG-models with FPC-models integrated in an area with high concentration of hydropower. Then it is possible to examine how the dynamics in the power system change depending on the selection of technology (DFIG or FPC) when connecting a wind farm. The power system is simulated during a summer night, i.e., a low load is connected. The Master thesis covers stability analysis of the power system by using rotor angle stability that are split into small-signal stability and transient stability (time-domain simulations) and finally voltage stability to see how the hydropower generators react when varying the power production in the wind farm. The Master thesis concludes that independently of wind turbine technique, integration of a wind farm has slight impact on the stability in the power system compared to a power system without a wind farm, even though the load is low. Further, an integration of a wind farms affects the reactive power production in neighbouring hydropower plants. Finally, when increasing the size of the wind farm the neighbouring hydropower station consume less reactive power which can induce problem with the voltage stability.
|
63 |
Ανάλυση και έλεγχος αιολικού συστήματος με γεννήτρια διπλής τροφοδοσίας με επιπλέον έλεγχο στο στάτη / Analysis and control of a DFIG wind system with a series grid side converterΠατσαρούχας, Χρήστος 27 April 2015 (has links)
Στις μέρες μας οι συνεχώς αυξανόμενες ενεργειακές ανάγκες, καθώς και η απαίτηση των κοινωνιών για ένα πιο καθαρό περιβάλλον, έχουν κάνει τις ανανεώσιμες πηγές ενέργειας όλο και πιο ελκυστικές ως προς την εκμετάλλευση τους. Η αξιοποίηση της αιολικής ενέργειας στην παραγωγή ηλεκτρικής ενέργειας κερδίζει όλο και περισσότερο έδαφος. Η τεχνολογία των αιολικών συστημάτων αναπτύσσεται συνεχώς ,με αποτέλεσμα να υπάρχουν διάφορες κατηγορίες αυτών, ανάλογα με τη χρήση για την οποία προορίζονται. Στην παρούσα διπλωματική μου εργασία, μελετάται ένα αιολικό σύστημα μεταβλητών στροφών που χρησιμοποιεί μία παραλλαγή της επαγωγικής μηχανής Διπλής Τροφοδοσίας. Η διαφοροποίηση του έγκειται στον επιπλέον dc/ac μετατροπέα που χρησιμοποιείται, προκειμένου να ελέγξουμε την τάση που μπορεί να δει ο στάτης. Μ΄ αυτό τον τρόπο, το αιολικό σύστημα μιας γεννήτριας διπλής τροφοδοσίας γίνεται ακόμα πιο αξιόπιστο, συνεχίζοντας την παραγωγή ισχύος και παραμένοντας συνδεδεμένο με το δίκτυο σε περίπτωση σφάλματος στην πλευρά του δικτύου. Στη μελέτη αυτή, αφού εξαγάγαμε το μαθηματικό μοντέλο του συστήματος και το προσομοιώσαμε σε περιβάλλον Matlab - Simulink, δοκιμάσαμε το σύστημα σε συνθήκες ύπαρξης σφάλματος στο δίκτυο. Στο σύστημα εφαρμόστηκαν κλασικές τεχνικές ελέγχου,με στόχο τη διατήρηση της μέγιστης απομάστευσης ισχύος από το σύστημα, την αύξηση της αντοχής του σε σφάλματα από την πλευρά του δικτύου, καθώς και τη μη αποσύνδεση του συστήματος από το δίκτυο σε μία τέτοια περίπτωση. Τέλος, συγκρίναμε τη συμπεριφορά αυτού του συστήματος με τη συμπεριφορά ενός κλασικού αιολικού συστήματος με επαγωγική γεννήτρια Διπλής Τροφοδοσίας και παραθέσαμε τις διαφορές. / The increasingly energy demands in our days and also the modern societies demand for a greener environment, have made the electrical energy production from renewable energy sources more attractive. The use of wind energy in the electrical energy production is having more and more fervent supporters. The technology and the types of the wind systems varies, depending on the use and the environmental conditions. In my diploma thesis I designed, we will study a variation of a wind system with a variable speed operation with a Doubly Fed Induction Generator. In this system we also use a dc/ac converter in order to control the voltage which the stator can “see”. Using this converter the wind system with a DFIG is more reliable and remains connected to the ac grid, maintaining the maximum power production, in case of a fault on grid side. In this thesis, after we made the mathematical model with a great accuracy and simulated using Matlab - Simulink, we tested it under conditions of different voltage sags from the side of the grid. In order to control the system and maintaining the power production power at the maximum level, we used classic control methods, and as a result, we achieved to keep the maximum level of power production and to keep the wind system connected to the grid in a scenario of a grid side fault. Finally, we compared the behavior of the system we designed with the wind system with the classic DFIG and we presented the differences.
|
64 |
Supervisory Hybrid Control of a Wind Energy Conversion and Battery Storage SystemKhan, Muhammad Shahid 31 July 2008 (has links)
This thesis presents a supervisory hybrid controller for the automatic operation and control of a wind energy conversion and battery storage system.
The supervisory hybrid control scheme is based on a radically different approach of modeling and control design, proposed for the subject wind energy conversion and battery storage system.
The wind energy conversion unit is composed of a 360kW horizontal axis wind turbine
mechanically coupled to an induction generator through a gearbox. The assembly is electrically interfaced to the dc bus through a thyristor-controlled rectifier to enable variable speed operation of the unit. Static capacitor banks have been used to meet reactive power requirements of the
unit. A battery storage device is connected to the dc bus through a dc-dc converter to support operation of the wind energy conversion unit during islanded conditions. Islanding is assumed to occur when the tiebreaker to the utility feeder is in open position. The wind energy conversion
unit and battery storage system is interfaced to the utility grid at the point of common coupling through a 25km long, 13.8kV feeder using a voltage-sourced converter unit. A bank of static
(constant impedance) and dynamic (induction motor) loads is connected to the point of common coupling through a step down transformer.
A finite hybrid-automata based model of the wind energy conversion and storage system has
been proposed that captures the different operating regimes of the system during grid-connected and in islanded operating modes. The hybrid model of the subject system defines allowable operating states and predefines the transition paths between these operating states. A modular
control design approach has been adapted in which the wind energy conversion and storage
system has been partitioned along the dc bus into three independent system modules. Traditional control schemes using linear proportional-plus-integral compensators have been used for each system module with suitable modifications where necessary in order to achieve the required
steady state and transient performance objectives. A supervisory control layer has been used to combine and configure control schemes of the three system modules to suite the requirements of system operation during any one operating state depicted by the hybrid model of the system. Transition management strategies have been devised and implemented through the supervisory control layer to ensure smooth inter-state transitions and bumpless switching among controllers.
It has been concluded based on frequency domain linear analysis and time domain
electromagnetic transient simulations that the proposed supervisory hybrid controller is capable of operating the wind energy conversion and storage system in both grid-connected and in islanded modes under changing operating conditions including temporary faults on the utility
grid.
|
65 |
Supervisory Hybrid Control of a Wind Energy Conversion and Battery Storage SystemKhan, Muhammad Shahid 31 July 2008 (has links)
This thesis presents a supervisory hybrid controller for the automatic operation and control of a wind energy conversion and battery storage system.
The supervisory hybrid control scheme is based on a radically different approach of modeling and control design, proposed for the subject wind energy conversion and battery storage system.
The wind energy conversion unit is composed of a 360kW horizontal axis wind turbine
mechanically coupled to an induction generator through a gearbox. The assembly is electrically interfaced to the dc bus through a thyristor-controlled rectifier to enable variable speed operation of the unit. Static capacitor banks have been used to meet reactive power requirements of the
unit. A battery storage device is connected to the dc bus through a dc-dc converter to support operation of the wind energy conversion unit during islanded conditions. Islanding is assumed to occur when the tiebreaker to the utility feeder is in open position. The wind energy conversion
unit and battery storage system is interfaced to the utility grid at the point of common coupling through a 25km long, 13.8kV feeder using a voltage-sourced converter unit. A bank of static
(constant impedance) and dynamic (induction motor) loads is connected to the point of common coupling through a step down transformer.
A finite hybrid-automata based model of the wind energy conversion and storage system has
been proposed that captures the different operating regimes of the system during grid-connected and in islanded operating modes. The hybrid model of the subject system defines allowable operating states and predefines the transition paths between these operating states. A modular
control design approach has been adapted in which the wind energy conversion and storage
system has been partitioned along the dc bus into three independent system modules. Traditional control schemes using linear proportional-plus-integral compensators have been used for each system module with suitable modifications where necessary in order to achieve the required
steady state and transient performance objectives. A supervisory control layer has been used to combine and configure control schemes of the three system modules to suite the requirements of system operation during any one operating state depicted by the hybrid model of the system. Transition management strategies have been devised and implemented through the supervisory control layer to ensure smooth inter-state transitions and bumpless switching among controllers.
It has been concluded based on frequency domain linear analysis and time domain
electromagnetic transient simulations that the proposed supervisory hybrid controller is capable of operating the wind energy conversion and storage system in both grid-connected and in islanded modes under changing operating conditions including temporary faults on the utility
grid.
|
66 |
Sub-synchronous interactions in a wind integrated power systemSuriyaarachchi, Don Hiranya Ravipriya 05 September 2014 (has links)
This thesis presents a comprehensive procedure to study sub-synchronous interactions in wind integrated power systems effectively and efficiently. The proposed procedure involves a screening phase and a detailed analysis phase. The screening is performed using a frequency scan and the detailed analysis is performed using small signal stability analysis. To facilitate the small signal analysis, a detailed linearized model of a Type 3 wind power plant is presented in this thesis. The model presented includes the generator, a three-mass drive train model, rotor and grid side converter controller models, converter transformer model and the pitch controller model. To accurately capture the effects of sub-synchronous interactions, the ac network is modelled using dynamic phasors.
It is shown that using the proposed procedure, the sub-synchronous interaction between a Type 3 wind power plant and a series compensated line is due to an electrical resonance between the wind power plant generator and the series capacitor. It is also shown that this interaction is highly controllable through the rotor side converter current controllers. This fact will be proven by studying the sub-synchronous interactions in a single machine power system as well as in multi machine power systems.
This thesis also presents a sub-synchronous interaction mitigation method using network devices. The performance of an SVC and a STATCOM is evaluated in this thesis. A small signal stability analysis based method will be used to design a sub-synchronous damping controller. A method will be presented to estimate the damping controller parameters systematically to obtain the desired performance using small signal stability analysis results.
Furthermore, it will be shown that by strongly controlling the voltage of the point of common coupling, the damping of the oscillations produced by the sub-synchronous interaction between the wind power plant and the series compensated line can be improved.
Based on the findings of this research, the thesis proposes a number of recommendations to be adopted when studying the sub-synchronous interactions in wind integrated power systems. These recommendations will facilitate to do such studies effectively and pinpoint the root cause of the sub-synchronous interactions.
|
67 |
Constant Voltage, Constant Frequency Operation Of A Self-excited Induction GeneratorCaliskan, Ahmet 01 October 2005 (has links) (PDF)
In this thesis, control schemes for the self-excited induction generator are developed with Matlab/Simulink. Self-excited induction generator is considered as a constant voltage-constant frequency supply for an isolated load. A wind turbine is assumed to be the variable-speed drive of the induction generator. Control schemes aim to ensure a constant voltage-constant frequency operation of the induction generator in case of the variations in the wind speed and/or the load.
From the general model of the self-excited induction generator, the characteristics of the system and the dynamic responses of the system in case of any disturbance are
examined. Next, the control strategies are developed both for the squirrel-cage rotor induction generator and for the wound-rotor induction generator. Two control loops are necessary for constant voltage-constant frequency operation of a variable speed induction generator, one for the voltage regulation and the other for the frequency regulation. After developing the control loops, constant voltage-constant frequency
operation of the self-excited induction generator is simulated with a cage type saturation adaptive induction generator, a fixed capacitor with thyristor controlled reactor (TCR) used for frequency regulation and switched external resistors
connected to the stator terminals used for voltage regulation.
|
68 |
Σχεδίαση εποπτικού περιβάλλοντος για τον έλεγχο αιολικών συστήματων μεταβλητής ταχύτητας με τη βοήθεια υπολογιστήΛιακοπούλου, Αικατερίνη 13 September 2011 (has links)
Στην παρούσα διπλωματική εργασία υλοποιείται η δημιουργία ενός user-friendly περιβάλλοντος μέσω του λογισμικού SIMULINK του MATLAB με τη βοήθεια του οποίου είναι δυνατή η αναπαράσταση τόσο των μοντέλων μίας ανεμογεννήτριας διπλής τροφοδοσίας (doubly-fed induction generator) όσο και των υπόλοιπων συνιστωσών του συστήματος. Ο χρήστης μπορεί ανά πάσα στιγμή να επεμβαίνει στα στοιχεία και της παραμέτρους μίας ανεμογεννήτριας διπλής τροφοδοσίας, να θέτει τις δικές του τιμές, και να ελέγχει τη συμπεριφορά και τις αποκρίσεις της.
Αναλυτικότερα, στο πρώτο κεφάλαιο πραγματοποιείται μια επισκόπηση της χρήσης των αιολικών συστημάτων και των ανανεώσιμων πηγών ενέργειας γενικότερα σε Ελλάδα και Ευρώπη, καθώς και κάποια οικονομικά στοιχεία που προκύπτουν. Παρουσιάζονται επιπλέον οι νέες κατευθύνσεις και το μέλλον της αιολικής ενέργειας.
Στο δεύτερο κεφάλαιο παρουσιάζονται τα βασικά δομικά εξαρτήματα μιας ανεμογεννήτριας, αναλύεται η έννοια της αεροδυναμικής μετατροπής όπως και οι κύριες μέθοδοι αεροδυναμικού ελέγχου που εφαρμόζονται. Εν συνεχεία αναφέρονται οι πιο διαδεδομένοι τύποι ανεμογεννητριών με τα πλεονεκτήματα και τα μειονεκτήματα τους, καθώς και οι πιο συνήθεις παραλλαγές της ανεμογεννήτριας διπλής τροφοδοσίας όπου και θα εξετάσουμε διεξοδικά στην παρούσα εργασία.
Στο τρίτο κεφάλαιο εξάγεται αναλυτικά η δυναμικές εξισώσεις μιας επαγωγικής μηχανής, καθώς και ο διανυσματικός έλεγχος της.
Στο τέταρτο κεφάλαιο, παρουσιάζεται το μοντέλο που περιγράφει μια ανεμογεννήτρια διπλής τροφοδοσίας, γίνεται εξαγωγή των εξισώσεων λειτουργίας της από το ηλεκτρικό ισοδύναμο της και παρατίθεται η θεωρία του διανυσματικού ελέγχου της μηχανής στη μόνιμη κατάσταση της.
Στο πέμπτο και τελευταίο κεφάλαιο, παρουσιάζεται βήμα προς βήμα η δημιουργία ενός φιλικού στον χρήστη περιβάλλοντος -που δημιουργήθηκε σε SIMULINK περιβάλλον- για τη διαχείριση μίας DFIG, και γίνεται σχολιασμός γραφικών παραστάσεων και αποκρίσεων της μηχανής τόσο στη μόνιμη λειτουργία της, όσο και σε πιο ακραίες συνθήκες λειτουργίας.
Στα παραρτήματα Α και Β δίνεται το ευρετήριο των συμβόλων και των παραμέτρων που χρησιμοποιούνται στην ανάλυση της DIFG που εμπεριέχονται στα υποσυστήματα της γεννήτριας, του μετατροπέα και των ελεγκτών. / -
|
69 |
Estudo do fluxo de potência de um gerador de indução de dupla alimentação atuando em um sistema de geração eólio-elétrica / Study of variation of power flow of a doubly-fed induction generator acting on a wind power generation systemNatália Moreira Jacob 03 April 2013 (has links)
A captação de energia eólica tem sido alvo de estudos em todo o mundo nas últimas décadas devido aos incentivos pela busca por geração de energia por meio de fontes alternativas. A configuração mais utilizada atualmente são as turbinas de três pás com eixo horizontal, upwind, operando com velocidade variável com limitação de potência por variação de passo, e utilizando o gerador de indução de dupla alimentação. A operação em velocidade variável com atuação no ângulo de passo permite a máxima captação de energia para as diferentes velocidades de vento, enquanto evita que a turbina ultrapasse o seu valor nominal de potência. O uso de conversores permite o controle das correntes do rotor, variando sua velocidade, e o controle da potência reativa de estator, e a montagem do tipo back-to-back permite que o fluxo de energia do rotor flua para a rede ou da rede. A modelagem matemática do sistema foi toda referenciada no referencial síncrono com notação vetorial e orientação de fluxo de rede, simplificando os modelos matemáticos. Para a montagem dos controladores foi utilizado o método de Controle de Modelo Interno e de Resistência Ativa. A montagem de todo o sistema para simulação foi realizada no Matlab/Simulink, e seu desenvolvimento é mostrado no decorrer do trabalho. Este trabalho analisa o fluxo de energia do sistema, desde a energia captada pelo vento até a energia entregue à rede. Para isso, são feitas análise dos fluxos das potências ativa e reativa do sistema, para fator de potência unitário, indutivo e capacitivo e para os mais recorrentes comportamentos do vento. Também são feitas análises a respeito dos regimes de operação do sistema, definidos a partir da relação entre os fluxos de potência, concluindo que a máquina poderá operar como gerador ou motor, devido principalmente à intensidade da variação do vento. / The use of wind energy has been the subject of studies around the world in recent decades due to the incentives to search for power generation through alternative sources. The most widely used configuration has been the three blades with horizontal axis and upwind turbine, operating in variable speed with power limitation by varying the pitch angle, and using the doubly fed induction generator configuration. The variable speed operation with power limitation enable for maximum energy harvesting for different wind speeds and prevents the turbine exceeds its nominal power. The use of converters allows for control of the rotor currents, varying the speed, and stator reactive power, and assembling type back-to-back allows for the rotor energy flux to flow into and out of the grid. Mathematical modeling of the whole system was referenced in the synchronous reference frame with vector notation and oriented by the grid flux, simplifying the mathematical models. For installation of the drivers, were used the Internal Model Control and Active Damping methods. The assembly of the entire system for simulation was conducted on Matlab / Simulink, and its step to step is shown in this work. This study analyzes the energy flow of the system, from the energy harvest from de wind to the energy delivered to the grid. To reach this, flow analysis of active and reactive power of the system is done, using unity, inductive and capacitive power factor, for the most recurrent wind behaviors. Analysis are made about the operation regimes of the system, defined as the relationship between the power flows, concluding that the machine can operate as a generator or motor, mainly due to the variation of the wind intensity.
|
70 |
Electro-mechanical modelling of tidal arraysSousounis, Marios Charilaos January 2018 (has links)
The aim of this study is to present, compare and improve the options of power transmission for tidal current arrays. The potential to generate low or zero carbon power from the world’s tides is increasing as technology moves forward. The technically available tidal current energy resource, the resource that can be captured using existing technology, in the United Kingdom can supply a significant amount of the UK electricity demand. Even though tidal current devices have similarities to offshore wind turbines in many aspects, a number of characteristics differentiate the approach needed regarding power transmission and drive-train design. Some of these characteristics are: predictable direction and speed of the tidal current, predetermined available area in a tidal channel, less swept area due higher density of water, continuous underwater operation and smaller distances to shore. This thesis is based on the hypothesis that tidal current energy can be harnessed using today’s technology in an efficient manner. Technology progression never stops and as new materials and methods become available the cost of utilising tidal current energy will drop in the years to come. However, the research question that has to be asked is whether using today’s technology tidal arrays can be an alternative source of electrical power. In order to respond to this research question electromechanical models of tidal current devices have been developed in detail, from resource to the grid connection, using mathematical linear and non-linear programming in MATLAB/Simulink. The tidal models developed include the tidal resource, the tidal turbine with pitch control, geared induction and synchronous generators, the power electronics with the generator controller, the grid side controller, the cables for power transmission, the filters and the grid connection. All the modelling aspects of this study are presented in Chapter 3. Single tidal current devices were compared using different generator technologies, squirrel cage induction generator or permanent magnet synchronous generator, and different location of the power converters, in the nacelle near the generator or many kilometres apart from the generator. Regarding the generator technology, results showed that even though differences are minor, the permanent magnet synchronous generators are more efficient. Regarding the location of the power converters results showed that positioning the power converters in the nacelle always yields fewer electrical losses but component accessibility is minimised due to the underwater operation of the tidal current device. A key focus aspect of the study is the power transmission option with onshore converters which is presented in detail. Using this concept it is possible to generate electricity from tidal current devices but at the same time keep the highest possible system reliability despite the continuous underwater operation. This concept has been used in the first demonstration tidal current arrays developed by Andritz Hydro Hammerfest. What is more, data provided by Andritz Hydro Hammerfest were utilised in order to validate the simulation models. In this study a step forward is taken regarding the concept of keeping the converter dry and controlling the tidal current generator from afar. An algorithm is developed to design power harmonic filters for systems that use long distance controls. Power harmonic filters allow the long distance control system to operate reliably under all conditions but generate significant electrical losses. The power harmonic filter design algorithm presented in this thesis estimates the exact filter parameters so that the filter ensures maximum system reliability and generate minimum possible losses. In addition tidal array topologies using this concept are developed. The final part of this thesis compares a number of different tidal array topologies based on resource to grid efficiency and component accessibility for maintenance. Results showed that when tidal current devices are clustered per four turbines on offshore platforms it is efficient to use as many clusters as possible connected to a single cable whose both ends are connected to the grid. Locating the power converters in the nacelle yields fewer electrical losses compared to locating the power converters on the offshore platform. However, the difference is minimised because the distance between the tidal current device and the offshore platform is the least possible. Having the power converters on an offshore platform is beneficial in terms of accessibility for maintenance and operation because they are not underwater. The results and the methodology from this thesis can be extended to other offshore renewable energy systems such as the wind and wave. In addition, this study can be used as a stepping stone for decision making by tidal current developers.
|
Page generated in 0.1026 seconds