Spelling suggestions: "subject:"conduction time"" "subject:"1induction time""
21 |
A study of interactions between an air bubble and a solid surface in a liquidWang, Louxiang Unknown Date
No description available.
|
22 |
[pt] PERSPECTIVAS SOBRE COMPORTAMENTO MECÂNICO E EFICIÊNCIA DE INIBIDORES NOS HIDRATOS DE CICLOPENTANO / [en] PERSPECTIVES ON MECHANICAL BEHAVIOR AND INHIBITOR EFFICIENCY IN CYCLOPENTANE HYDRATESMARINA RIBEIRO BANDEIRA 13 August 2024 (has links)
[pt] No âmbito da indústria de petróleo e gás, a interrupção das linhas de produção
e transporte devido à acumulação de compostos orgânicos e inorgânicos representa
um desafio generalizado e significativo, resultando em consideráveis perdas
financeiras e apreensões ambientais. Os hidratos de gás, particularmente
enfatizados entre vários desafios relacionados à deposição inorgânica, apresentam
uma questão complexa caracterizada pela formação de sólidos cristalinos à base de
água, semelhantes ao gelo, ocorrendo sob condições de pressão elevada e baixas
temperaturas que se formam quando moléculas leves de hidrocarbonetos e água se
combinam para formar uma estrutura ordenada específica. A formação de hidrato
começa na interface água-hidrocarboneto, o que destaca o papel crítico que a
reologia interfacial desempenha neste processo. Apesar da importância desta
interface na formação de hidratos, persiste uma lacuna na pesquisa, particularmente
no emprego de abordagens de reologia de cisalhamento. Este estudo ajuda a
preencher essa lacuna investigando as propriedades mecânicas e de fluxo da
interface, utilizando um recurso em um reômetro rotacional, uma célula de anel de
parede dupla, para controle preciso da temperatura. O ciclopentano serve como
formador de hidrato, permitindo a experimentação sob condições atmosféricas.
pressão e temperaturas variadas. Os protocolos exploram a temperatura e as
concentrações de hidrocarbonetos, com ênfase no envolvimento dos cristais de gelo
no início da formação de hidratos. Após a saturação completa da interface
hidrocarboneto/água por hidratos, os módulos elásticos e viscosos interfaciais são
obtidos através de varreduras de deformação para avaliar a fragilidade do filme de
hidrato e resposta mecânica. Além disso, é examinado o impacto do tempo de
envelhecimento e do tipo de cisalhamento (estático ou dinâmico) na rigidez do
hidrato. Testes com inibidores termodinâmicos, como cloreto de sódio e
monoetilenoglicol, demonstram extensão significativa do tempo de indução. Além
disso, mudanças sistemáticas na taxa de cisalhamento são investigadas para
compreender de forma abrangente sua influência nas características e propriedades
do filme hidratado sob diversas condições de histórico de cisalhamento. No geral,
esta pesquisa lança luz sobre as nuances da dinâmica da interface águahidrocarboneto na formação e mitigação de hidratos. / [en] Within the realm of the oil and gas industry, the disruption of production
and transportation lines due to the accumulation of organic and inorganic
compounds poses a widespread and significant challenge, resulting in
considerable financial losses and environmental concerns. Gas hydrates,
particularly emphasized among various challenges related to inorganic
deposition, present a complex issue characterized by the formation of
crystalline water-based solids, akin to ice, occurring under conditions of high
pressure and low temperatures that arise when light hydrocarbon molecules
and water combine to form a specific ordered structure. Hydrate formation
begins at the water-hydrocarbon interface, highlighting the critical role
interfacial rheology plays in this process. Despite the importance of this
interface in hydrate formation, a research gap persists, particularly in the
employment of shear rheology approaches. This study aids in bridging this
gap by investigating the mechanical and flow properties of the interface,
utilizing a resource in a rotational rheometer, a double-wall ring cell, for
precise temperature control. Cyclopentane serves as the hydrate former,
allowing experimentation under atmospheric pressure and varied
temperatures. Protocols explore temperature and hydrocarbon concentrations,
with an emphasis on the involvement of ice crystals in the early stages of
hydrate formation. Following complete saturation of the hydrocarbon/water
interface by hydrates, interfacial elastic and viscous moduli are obtained
through strain sweeps to assess hydrate film fragility and mechanical
response. Additionally, the impact of aging time and shear type (static or
dynamic) on hydrate stiffness is examined. Tests with thermodynamic
inhibitors, such as sodium chloride and monoethylene glycol, demonstrate a
significant extension of the induction time. Furthermore, systematic changes
in shear rate are investigated to comprehensively understand their influence
on the characteristics and properties of the hydrated film under various shear
history conditions. Overall, this research sheds light on the nuances of waterhydrocarbon interface dynamics in hydrate formation and mitigation.
|
23 |
Investigations intothe crystallization of butyl parabenYang, Huaiyu January 2011 (has links)
In thisproject, solubility of butyl paraben in 7 puresolvents and 5 ethanol aqueous solvents has been determined at from 1 ℃to 50 ℃. Thermodynamic properties of butyl paraben have been measured by DifferentialScanning Calorimetey. Relationship between molar solubility of butyl paraben in6 pure solvents and thermodynamic properties has been analyzed. Thisrelationship suggests a method of estimating activity of solute at equilibrium fromcombining solubility data with DSC measurements. Then, activity coefficient accordingto the solubility at different temperatures can be estimated. Duringthe solubility measurements in ethanol aqueous solvents, it is found that whenbutyl paraben is added into aqueous solutions with certain proportion ethanol,solutions separates into two immiscible liquid layers in equilibrium. Water andethanol are primary in top layer, while the butyl paraben is primary in bottomlayer, but the solution turns to cloudy when two layers of solution are mixed. Theaim of this work was to present the phase behaviour of liquid-liquid-phaseseparation for (butyl paraben + water + ethanol) ternary system from 1 ℃ to 50 ℃at atmospheric pressure. Thearea of liquid-liquid-phase separation region in the ternary phase diagram increaseswith the increasing temperature from 10 ℃to 50 ℃. In thisstudy, more than several hundreds of nucleation experiments of butyl paraben havebeen investigated in ethyl acetate, propanol, acetone and 90% ethanol aqueoussolution. Induction time of butyl paraben has been determined at 3 differentsupersaturation levels in these solvents, respectively. Free energy ofnucleation, solid-liquid interfacial energy, and nuclei critical radius havebeen determined according to the classical nucleation theory. Statistical analysis ofinduction time reveals that the nucleation is a stochastic process with widevariation even at the same experiment condition. Butyl paraben nucleates most difficultlyin 90 % ethanol than in other 3 solvents, and most easily in acetone. The interfacialenergy of butyl paraben in these solvents tends to increasing with decreasemole fraction solubility in these solvents. Coolingcrystallizations with different proportions of butyl paraben, water and ethanolhave been observed by Focused Beam Reflectance Method, Parallel VirtualMachine, and On-line Infrared. The FBRM, IR curves and the PVM photos show someof the solutions appeared liquid-liquid phase separation during coolingcrystallization process. The results suggest that if solutions went throughliquid-liquid phase separation region during the cooling crystallizationprocess the distribution of crystals crystal was poor. Droplets from solutions withsame proportion butyl paraben but different proportions of water and ethanolhave been observed under microscope. Induction time of the droplets has been determinedunder the room temperature. Droplets from top layer or bottom layer of solutionwith liquid-liquid phase separation on small glass or plastic plates were alsoobserved under microscope. The microscope photos show that the opposite flows ofcloudy solution on the glass and the plastic plate before nucleation. The resultsof the cooling and evaporation crystallization experiments both revealed thatnucleation would be prevented by the liquid-liquid phase separation. / QC 20110630
|
24 |
Crystallization of Parabens : Thermodynamics, Nucleation and ProcessingHuaiyu, Yang January 2013 (has links)
In this work, the solubility of butyl paraben in 7 pure solvents and in 5 different ethanol-water mixtures has been determined from 1 ˚C to 50 ˚C. The solubility of ethyl paraben and propyl paraben in various solvents has been determined at 10 ˚C. The molar solubility of butyl paraben in pure solvents and its thermodynamic properties, measured by Differential Scanning Calorimetry, have been used to estimate the activity of the pure solid phase, and solution activity coefficients. More than 5000 nucleation experiments of ethyl paraben, propyl paraben and butyl paraben in ethyl acetate, acetone, methanol, ethanol, propanol and 70%, 90% ethanol aqueous solution have been performed. The induction time of each paraben has been determined at three different supersaturation levels in various solvents. The wide variation in induction time reveals the stochastic nature of nucleation. The solid-liquid interfacial energy, free energy of nucleation, nuclei critical radius and pre-exponential factor of parabens in these solvents have been determined according to the classical nucleation theory, and different methods of evaluation are compared. The interfacial energy of parabens in these solvents tends to increase with decreasing mole fraction solubility but the correlation is not very strong. The influence of solvent on nucleation of each paraben and nucleation behavior of parabens in each solvent is discussed. There is a trend in the data that the higher the boiling point of the solvent and the higher the melting point of the solute, the more difficult is the nucleation. This observation is paralleled by the fact that a metastable polymorph has a lower interfacial energy than the stable form, and that a solid compound with a higher melting point appears to have a higher solid-melt and solid-aqueous solution interfacial energy. It has been found that when a paraben is added to aqueous solutions with a certain proportion of ethanol, the solution separates into two immiscible liquid phases in equilibrium. The top layer is water-rich and the bottom layer is paraben-rich. The area in the ternary phase diagram of the liquid-liquid-phase separation region increases with increasing temperature. The area of the liquid-liquid-phase separation region decreases from butyl paraben, propyl paraben to ethyl paraben at the constant temperature. Cooling crystallization of solutions of different proportions of butyl paraben, water and ethanol have been carried out and recorded using the Focused Beam Reflectance Method, Particle Vision and Measurement, and in-situ Infrared Spectroscopy. The FBRM and IR curves and the PVM photos track the appearance of liquid-liquid phase separation and crystallization. The results suggest that the liquid-liquid phase separation has a negative influence on the crystal size distribution. The work illustrates how Process Analytical Technology (PAT) can be used to increase the understanding of complex crystallizations. By cooling crystallization of butyl paraben under conditions of liquid-liquid-phase separation, crystals consisting of a porous layer in between two solid layers have been produced. The outer layers are transparent and compact while the middle layer is full of pores. The thickness of the porous layer can reach more than half of the whole crystal. These sandwich crystals contain only one polymorph as determined by Confocal Raman Microscopy and single crystal X-Ray Diffraction. However, the middle layer material melts at lower temperature than outer layer material. / <p>QC 20130515</p> / investigate nucleation and crystallization of drug-like organic molecules
|
Page generated in 0.0768 seconds