• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 25
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 24
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Avaliação do tratamento de efluente líquido gerado em usina termelétrica usando zeólita de cinzas de carvão / Evaluation of treatment of coal ash landfill leachate produced in thermoelectric using zeolitic materials from coal combustion by-products

Caio da Silva Miranda 13 November 2018 (has links)
As indústrias lançam diversos poluentes no meio ambiente. Dentre os poluentes destacam-se os elementos tóxicos presentes em efluentes líquidos por acarretarem alto risco potencial à saúde humana e ao meio ambiente. Os efluentes podem ser tratados por materiais adsorventes, os quais podem ser provindos de resíduos industriais. Uma forma de contribuir significativamente na sustentabilidade de uma indústria é a transformação de um de seus resíduos em sub-produto de valor agregado para aplicação no tratamento de seus efluentes líquidos como adsorvente de baixo custo. O objetivo deste trabalho foi sintetizar, e caracterizar zeólitas de cinzas de carvão e avaliar sua aplicação como material adsorvente no tratamento de efluente. Os materiais zeolíticos derivados de três tipos diferentes de cinzas de carvão (cinzas manga, cinzas ciclone e cinzas pesadas) geradas na usina termelétrica de Figueira-PR foram usados para tratar o lixiviado do aterro de cinzas de carvão da mesma usina. As seguintes características das zeólitas foram determinadas: composição mineralógica, composição química, teor de carbono total, análise morfológica, área superficial específica, capacidade de troca catiônica (CTC), perda ao fogo, pH, condutividade e densidade aparente. A fase zeolítica formada foi do tipo sodalita com as três amostras usadas como matéria prima após ativação hidrotérmica alcalina. O material zeolítico de cinzas manga apresentou a menor relação SiO2/Al2O3 (1,46), maior CTC (2,36 meq g-1) e área superficial específica (69,5 m2 g-1) e, consequentemente, maior capacidade de remoção dos íons do efluente. As concentrações de As e Cr estavam acima do padrão de lançamento de efluentes. As três amostras de materiais zeolíticos apresentaram uma remoção significativa de Ni, Cd, Zn e Co na dose de 10 g.L-1. Os materiais zeolíticos das cinzas manga e ciclone foram eficientes para reduzir a concentração de As abaixo do limite imposto pela legislação, enquanto a remoção do Cr não foi efetiva com nenhum dos materiais. Na segunda etapa do trabalho, as zeólitas foram modificadas com o surfactante brometo de hexadeciltrimetilamônio (HTDMA-Br) em concentrações de 1,8 e 20 mmol L-1. A modificação das zeólitas não melhorou a eficiência de remoção do As. A remoção do Cr usando a amostra de zeólita de cinzas manga modificada com HDTMA-Br 20 mmol L-1 resultou em uma concentração final muito próxima ao limite permitido pela legislação. / The industries release various types of pollutants into to the environment. Among these pollutants are the liquid effluents containing toxic elements, they carry a high potential risk to human health and the environment. Some effluents can be treated by adsorbent materials, which can be made from industrial waste. One way to contribute significantly to the sustainability of an industry is to transform one of its residues into a value-added by-product and use in the treatment of its own liquid effluents as a low cost adsorbent. The objective of this estudy was to synthesize and characterize coal ash zeolites and evaluate their application as adsorbent material in the treatment of effluent. Zeolite materials derived from three different types of coal ash (fly ashes, cyclone ashes and heavy ashes) generated at the Figueira-PR thermoelectric plant were used to treat leachate from the coal ash landfill of the same plant. The following zeolite characteristics were determined: mineralogical composition, chemical composition, total carbon content, morphological analysis, specific surface area, cation exchange capacity (CTC), fire loss, pH, conductivity and bulk density. The zeolite phase formed with the three samples used as raw material after alkaline hydrothermal activation was sodalite. The zeolite material from fly ash had the lowest SiO2/Al2O3 ratio (1.46), higher CTC (2.36 meq g-1) and specific surface area (69.5 m2 g-1) and, consequently, greater effluent removal capacity. The As and Cr concentrations were above the effluent discharge standard. The three samples of zeolitic materials showed a significant removal of Ni, Cd, Zn and Co in the dose of 10 g L-1. The zeolite materials from fly and cyclone ash were efficient to reduce As concentrations below the limit imposed by legislation, while removal of Cr was not effective with any of the materials. In the second stage of the study, the zeolites were modified with the surfactant hexadecyltrimethylammonium bromide (HTDMA-Br) in concentrations of 1.8 and 20 mmol.L-1. The zeolite removal efficiency of As did not improve after its modification. Removal of Cr using the 20 mmol.L-1 modified HDTMA-Br modified fly ash zeolite sample resulted in a final concentration very close to the limit allowed by the legislation.
22

Interferência dos metais zinco, chumbo e cobre, no processo de nitrificação no tratamento de efluentes de uma indústria química: estudo de caso / not available

Castro, Leonidia Maria de 21 May 2001 (has links)
Durante o estudo de um sistema de tratamento de efluentes de uma indústria química, contendo em suas águas residuárias vários metais pesados foi observada a ineficiência no processo de nitrificação do efluente tratado. Diante dessa constatação, desenvolveu-se este trabalho visando estudar as interferências dos metais pesados, Pb2+, Zn2+ e Cu2+ no desempenho do processo de nitrificação em um sistema similar de tratamento. Para observação dos efeitos dos metais Zn2+, Pb2+ e Cu2+ isoladamente, foram montados 3 reatores e simuladas as concentrações afluentes do tanque de aeração da indústria. Outros três reatores alimentados com soluções contendo Zn+Cu, Zn+Pb e Pb+Cu utilizados para observação de possíveis efeitos de sinergismo e antagonismo. Um outro reator foi alimentado com a solução dos três metais (Zn2+, Cu2+ e Pb2+). Todos os reatores, recebendo adição de metal ou não, apresentaram concentrações muito elevadas de nitrito. Na realização do ensaio de NMP ficou evidente a inibição dos organismos oxidantes de nitrito, que pode ter ocorrido pela alta concentração do próprio nitrito, ácido nitroso ou amônia livre. Efeitos dos metais Zn2+ e Cu2+ não foram evidentes, o Pb2+ foi o único metal que apresentou efeito de inibição no processo de nitrificação. Os reatores que receberam combinação de íons metálicos não evidenciaram efeitos de sinergismo nem antagonismo, sendo que o reator que recebeu adição dos três íons apresentou menor eficiência. / During the study of the chemical industry effluent treatment system containing, several heavy metals, was observed an inefficiency in the nitrification process in final effluent. Therefore, this work was deve!oped to find out ofthe study of the interference of the heavy metals, Pb2+, Zn2+ and Cu2+ on the performance of nitrification process in a similar system of treatment. For observation of the effects of metals Zn2+, Pb2+ and Cu2+ separately, were established three reactors and simulate the influent concentration in the aeration tank of the industry. Other three reactors were fed with solution containing Zn+Cu, Zn+Pb and Pb+Cu for observation of possible synergism or antagonism effects. The other reactor was fed with a solution of the three metals (Zn2+, Cu2+ and Pb2+). All the reactors, receiving the addition of metaIs or not, presented very high concentrations of nitrite. In the realization of the test of NMP, the inhibition of the nitrite oxidizers organisms was evident, that might have happened due to high concentration of nitrous acid, free ammonia and nitrite. The effects of the metals Zn2+ and Cu2+ were not evident; but the Pb2+ was the only metal that presented inhibition effect in the nitrification process. The reactors that received the metallic ion combination didn\'t evidence neither synergism nor antagonism effects, however the reactor that received the addition of the three ions presented smaller efficiency.
23

SYNTHESIS, FUNCTIONALIZATION, AND APPLICATION OF NANOFILTRATION AND COMPOSITE MEMBRANES FOR SELECTIVE SEPARATIONS

Colburn, Andrew Steven 01 January 2019 (has links)
Future nanofiltration (NF) membranes used for selective separations of ions and small organic molecules must maintain performance in environments where high concentrations of total dissolved solvents or foulants are present. These challenges can be addressed through the development of composite membranes, as well as the engineering of enhanced surface properties and operating conditions for existing commercial membranes. In this work, ion transport through commercial thin film composite (TFC) polyamide NF membranes were studied in both lab-prepared salt solutions and industrial wastewater. The dependence of several variables on ion rejection was investigated, including ion radius, ion charge, ionic strength, and temperature. The impact of scaling and increasing ionic concentration on membrane performance during recovery of industrial wastewater was investigated. Fouling of the membrane surface was reduced by enhancing commercial NF membrane surfaces via aqueous-phase esterification of lignin sulfonate. NF membranes were also created utilizing an ionic liquid solvent (1-ethyl-3-methylimidazolium acetate) to integrate composite materials into cellulose. Composite materials such as graphene oxide quantum dots, iron III particles, and lignin have been shown to be interact strongly with cellulose in solution with ionic liquid and bind together cellulose chains via hydrogen bonds following nonsolvent induced phase inversion. Studies suggest the composite materials modify membrane surface chemistry and improve selectivity of small organic molecules (~300 nm) while allowing for the complete passage of ions.
24

Industrial wastewater treatment and other environmental problems in Wuhan : Is Swedish technology a solution? / Industriell avloppsvattenrening och andra miljöproblem i Wuhan : kan svensk miljöteknik vara lösningen?

Hagberg, Anna January 2007 (has links)
År 2000 startades ett samarbete mellan Wuhan i Kina och Borlänge Energi i Sverige. De två parterna bestämde år 2005 tillsammans med IVL, Svenska Miljöinstitutet, att samarbeta inom följande områden; hållbar energiproduktion, hållbar avfallsproduktion samt grundandet av ett miljöteknikcentrum i Wuhan. Miljöteknikcentrumet är till för att vara en plattform för svensk miljöteknik och expertis. Som ett första steg inför grundandet av ett miljöteknikcentrum gjordes en undersökning för att se inom vilka sektorer svensk miljöteknik kan etableras. Undersökningen var inriktat på industriell avloppsvattenrening i Wuhan; bedömning av vilka typer av industrier/företag som har problem med avloppsvattenreningen och i vilken utsträckning det finns svenska tekniklösningar på problemen. Undersökningen genomfördes genom intervjuer med myndigheter och en del utvalda företag. Det var svårt att få fram information om vilka företag som inte följer de kinesiska gränsvärdena, varför en del besök gjordes till företag som lever upp till gränsvärdena. På grund av detta togs även andra problem med miljön som företagen hade upp. Några kommunala reningsverk besöktes och intervjuades också för att få en bättre bild av den kommunala vattenreningssituationen. En generell beskrivning av Wuhans miljösituation utfördes också samt en beskrivning av de viktigaste miljömyndigheterna och institutionerna. Wuhans största utmaning är att konstruera reningsverk till alla de 3.5 miljoner som fortfarande släpper sitt avloppsvatten rätt ut till sjöar och floder, snarare än att ytterligare rena det industriella avloppsvattnet. Behandlingsgraden av det industriella avloppsvattnet har nått 97 % medan behandlingsgraden av det kommunala avloppsvattnet endast nått 70 %. Besök vid de utvalda företagen och kommunala reningsverk ledde till slutsatsen att svensk teknik och expertis kan införas i följande områden: hantering av slam från reningsverk, byggandet av förbränningsanläggningar för sopor och hur man löser problemet med att rena luften från gaser som SO2 och dioxiner. De flesta företagen kunde följa de kinesiska gränsvärdena för utsläpp av avloppsvatten men mycket kan göras för att förbättra företagens tekniker ytterligare. Detta utförs dock nästan aldrig eftersom det är en ekonomisk fråga. Det är möjligt för Wuhan att sätta lokala, hårdare gränsvärlden för att tvinga företagen att förbättra sina reningstekniker ytterligare. / In 2000 a co-operation between Wuhan in China and Borlänge Energi in Sweden started. The two parts decided in 2005 together with IVL, the Swedish Research Institute, to co-operate in the fields of sustainable energy production, sustainable waste management and the establishment of an Environmental Technology Centre, supplying Swedish environmental expertise to companies in Wuhan. As a first step for the establishment of an Environmental Technology Centre in Wuhan, an investigation was made to find out in which sectors Swedish environmental technology could be established. The investigation took aim at observing the industrial wastewater treatment in Wuhan and to see which types of companies that have problems with the wastewater treatment and if there existed Swedish technology that could solve the problems. The investigation was performed through interviews with the authorities and some selected companies. It was difficult to get information about companies that did not comply with the National Chinese wastewater standards. This meant that some of the visits were made to companies that comply with the standards, also taking into consideration other problems with the environment that the companies might have. Visits were also paid to municipal wastewater treatment plants to get an overview over the municipal wastewater treatment situation. An overall survey of the environmental situation in Wuhan was also made and a presentation of the most important environmental departments and institutions is given. The greatest challenge for Wuhan is to construct wastewater treatment plants for the around 3.5 million people that still discharge their wastewater directly to rivers and lakes, rather than to improve the industrial wastewater treatment further. The treatment rate of the industrial wastewater has reached 97%, but the municipal wastewater treatment rate has only reached 70%. After the visits to the selected companies and municipal wastewater treatment plants the conclusion was made that Swedish technologies and expertise can be applied to the following areas; handling sludge from the wastewater treatment plants, construction of waste incineration plants and handling flue gas and dioxins. Most of the visited companies could follow the wastewater standards. Although much can be done to improve their technologies further, this is not done since it is too expensive. It is possible for Wuhan to apply stricter local wastewater treatment standards. This could be used as a tool to make companies invest more money in improvements of their technologies.
25

Industriella avloppsvatten i Chile : Identifiering av problem samt förslag på åtgärder / Industrial Wastewater in Chile : Identification of Problems and Suggestions for Improvement

Risberg, Anna January 2006 (has links)
Chile and Santiago are struggling with heavy environmental problems as a consequence of urbanisation and industrialisation. In the Santiago region the air is seriously contaminated and most of the rivers are classified as heavily polluted. The aim of this thesis is to survey the industrial fluid waste situation in the Santiago region and to make suggestions on technological improvements or process changes. The purpose is also to study five different enterprises more closely and to give more detailed suggestions for improvement. Another purpose is to summarize relevant Chilean legislation. Information, provided by the supervisory authority, about the release of industrial wastewater to rivers has been analysed. Deep interviews have been made with authorities and consultants. Five enterprises have been visited; a brewery, a dairy, a bakery, a producer of cooked meat and a surface treatment industry. The present treatment of the wastewater was studied at the plants and the information was completed with a questionnaire to the responsible at each company. The contamination load released to the Chilean rivers is heavy. The rivers in southern Chile receive the biggest loads of BOD and SS and the rivers in central Chile were the most exposed to discharges of the metals Cr, Cu, Zn and CN as well as phenols. The industrial discharge into the rivers of Santiago RM and Region VII is also to a large extent characterized by high concentrations of BOD and SS. Large releases of oils and greases, nitrogen and phosphorus are also fairly common, as are too high or too low pH levels. The food industry is the most contaminating sector, but also tanneries have great problems with effluents exceeding limits. All five companies visited share the need to take measures towards more water saving technologies. The brewery, the producer of cooked meat and the surface treatment company also need end-of-pipe-treatment of their wastewater. In many cases, the recommended and most economic alternative is to separate the flows with the highest concentration of polluting substances for internal treatment, while releasing the rest of the wastewater to the outside sewage system. The costs of the suggested changes must be balanced against the present costs for treatment of wastewater and remaining solid waste as well as the costs for alternative treatments. The economic incentives for Chilean companies to invest in wastewater treatment plants or to optimize the processes until today have been few. Cost reductions may be achieved by savings in water consumption and reuse of raw material. Another motive could be to keep “one step ahead” if the discharge limits in the future are tightened up leading to rising costs. / Chile och Santiago brottas med omfattande miljöproblem till följd av urbanisering och industrialisering. I santiagoregionen är luftföroreningarna svåra och de flesta floderna klassas som gravt förorenade av CONAMA, det chilenska naturvårdsverket. Syftet med examensarbetet är att kartlägga situationen i santiagoregionen med avseende på industriell avloppsrening samt att ge förslag på förbättring av teknik eller förändring av processer. Dessutom är syftet att studera fem industrier närmare och att ge mer detaljerade förslag på åtgärder. Syftet är också att ge rekommendationer för fortsatt utveckling av relevant chilensk lagstiftning. Uppgifter från tillsynsmyndigheten för utsläpp till ytvattendrag har studerats och djupintervjuer har gjorts med myndigheter och konsulter. Fem olika industrier besöktes; ett bryggeri, ett mejeri, ett bageri, ett charkuteri samt en ytbehandlingsindustri. Nuvarande hantering av processvattnet studerades på plats och med hjälp av ett frågeformulär kompletterades uppgifterna av ansvariga på företagen. Föroreningsbelastningen på Chiles floder är stor. Floderna i södra delen av landet tar emot störst mängder organiskt material och suspenderat material medan centrala Chiles floder är värst drabbade av utsläpp av metallerna Cr, Cu, Zn och CN samt utsläpp av fenoler. Utsläppen från industrin till floderna i Region Metropolitana och Region VII kännetecknas också i stor utsträckning av höga halter BOD och suspenderat material. Relativt vanligt är också stora utsläpp av oljor och fetter, kväve, fosfor samt för höga eller låga för pH-värden. Det är främst flera olika typer av livsmedelsindustri, som har de största utsläppen till floderna, men även garverierna har stora problem med överskridande av gränsvärden. Gemensamt för de fem besökta företagen är att vattenbesparande åtgärder bör vidtas för att minska volymen avloppsvatten som går till extern eller intern behandling. Bryggeriet, charkuterifabriken och ytbehandlaren behöver även end-of-pipe-rening. Det kan ofta vara lämpligt och mer ekonomiskt att avskilja de flöden som har högst halt av föroreningar till den interna reningsanläggningen. Resten av avloppet kan i vissa fall släppas ut på avloppsnätet. Kostnader för föreslagna åtgärder måste vägas mot aktuella kostnader för behandling av avlopp och restprodukter, samt kostnader för alternativa behandlingar. Incitamenten, bl a de ekonomiska, för chilenska företag att skaffa eget reningsverk eller att resurseffektivisera produktionen har hittills varit små. Kostnadsminskningar kan uppnås genom sänkt vattenförbrukning samt återanvändning av råmaterial. Ytterligare en drivkraft kan vara att ”ligga steget före” om utsläppskraven i framtiden skärps och kostnaderna därmed ökar.
26

Development and Optimization of Novel Emulsion Liquid Membranes Stabilized by Non-Newtonian Conversion in Taylor-Couette Flow for Extraction of Selected Organic and Metallic Contaminants

Park, Yonggyun 19 May 2006 (has links)
Extraction processes employing emulsion liquid membranes (ELMs), water-in-oil emulsions dispersed in aqueous phase, have been shown to be highly efficient in removing a variety of organic and inorganic contaminants from industrial wastewaters. As a result, they have been considered as alternative technologies to other more common separation processes such as pressure-driven membrane processes. Unfortunately, a widespread use of the ELM process has been limited due to the instability of emulsion globules against fluid shear. Breakup of emulsions and subsequent release of the internal receptor phase to the external donor phase would nullify the extraction process. Numerous studies have been, therefore, made in the past to enhance the stability of ELMs. Examples include adding more surfactants into the membrane phase and increasing the membrane viscosity. However, increased stability has been unfortunately accompanied by loss in extraction efficiency and rate in most reported attempts. The primary objective of this research is to apply the ELMs in a unique contacting device, a Taylor-Couette column, which provides a relatively low and uniform fluid shear that helps maintaining the stability of emulsion without compromising the extraction efficiency of a target compound. The ELM used in this study is made of membrane phase converted into non-Newtonian fluid by polymer addition, which provides additional uncommon remedy for the problem. This innovative ELM process was optimized to treat various types of simulated industrial wastewaters containing selected phenolic compounds and heavy metals. Experiments performed in this study suggested that the newly developed ELM process achieved exceptionally high overall removal efficiencies for the removal of these target compounds in relatively short contact time. Mechanistic predictive models were further developed and verified with the experimental data. Combined with the experimental data and novel mathematical predictive models, this study is expected to have a high impact on immediate practices of emulsion liquid membrane technologies in relevant industries.
27

Evaluation of fluidised-bed reactors for the biological treatment of synthol reaction water, a high-strength COD petrochemical effluent / by Katharine Gaenor Aske Swabey

Swabey, Katharine Gaenor Aske January 2004 (has links)
Reaction water, a high-strength COD (chemical oxygen demand) petrochemical effluent, is generated during the Fischer-Tropsch reaction in the SASOL Synthol process at SASOL SynFuels, Secunda, South Africa. Distillation of the reaction water to remove non- and oxygenated hydrocarbons yields approximately 25 - 30 ML/d of an organic (carboxylic) acid-enriched stream (average COD of 16 000 mg/L) containing primarily C2 – C5 organic acids, light oils, aldehydes, ketones, cresols and phenols. Together with the Oily sewer water (API) and Stripped Gas Liquor (SGL) process streams, this process effluent is currently treated in ten dedicated activated sludge basins. However, the successful operation of these activated sludge systems has proven to be difficult with low organic loading rates (3.5 kg COD/m3.d) low COD removal efficiencies (<80 %) and high specific air requirements (60 - 75 m3 air/kg CODrem). It is hypothesised that these operational difficulties can be attributed to organic shock loadings, variation in volumetric and hydraulic loadings, as well as variations in the composition of the various process streams being treated. Due to the fact that the Fischer-Tropsch (Synthol) reaction water constitutes 70 % of the COD load on the activated sludge systems, alternative processes to improve the treatment cost and efficiency of the Fischer-Tropsch acid stream are being investigated. Various studies evaluating the aerobic and anaerobic treatment of Fischer-Tropsch reaction water alone in suspended growth wastewater treatment systems have proven unsuccessful. High rate fixed-film processes or biofilm reactors, of which the fluidised-bed reactors are considered to he one of the most effective and promising processes for the treatment of high-strength industrial wastewaters, could he a suitable alternative. The primary aim of this study was to evaluate the suitability of biological fluidised-bed reactors (BFBRs) for the treatment of Fischer-Tropsch reaction water. During this study, the use of aerobic and anaerobic biological fluidised-bed reactors (BFBR), using sand and granular activated carbon (GAC) as support matrices, were evaluated for the treatment of a synthetic effluent analogous to the Fischer-Tropsch reaction water stream. After inoculation, the reactors were operated in batch mode for 10 days at a bed height expansion of 30% and a temperature of 30 ºC to facilitate biofilm formation on the various support matrices. This was followed by continuous operation of the reactors at hydraulic retention times (HRTs) of 2 days. While the COD of the influent and subsequent organic loading rate (OLR) was incrementally increased from 1 600 mg/L to a maximum of 20 000 mg/L and 18 000 mg/L for the aerobic and anaerobic reactors, respectively. Once the maximum influent COD concentration had been achieved the OLR was further increased by decreasing the HRTs of the aerobic and anaerobic reactors to 24h and 8h, and 36h, 24h and 19h, respectively. The dissolved O2 concentration in the main reactor columns of the aerobic reactors was constantly maintained at 0.50 mg/L. Chemical Oxygen Demand (COD) removal efficiencies in excess of 80 % at OLR of up to 30 kg COD/m3.d were achieved in the aerobic BFBRs using both sand and GAC as support matrices. Specific air requirements were calculated to be approximately 35 and 41 m3 air/kg CODrem for the BFBRs using sand and GAC as support matrices, respectively. The oxygen transfer efficiency was calculated to be approximately 5.4 %. At high OLR (> 15 kg COD/m3.d) significant problems were experienced with plugging and subsequent channelling in the BFBR using GAC as support matrix and the reactor had to be backwashed frequently in order to remove excess biomass. Despite these backwash procedures, COD removal efficiencies recovered to previous levels within 24 hours. In contrast, no significant problems were encountered with plug formation and channelling in the BFBR using sand as support matrix. In general the overall reactor performance and COD removal efficiency of the aerobic BFBR using sand as support matrix was more stable and consistent than the BFBR using GAC as support matrix. This BFBR was also more resilient to variations in operational conditions, such as the lowering of the hydraulic retention times and changes in the influent pH. Both aerobic reactors displayed high resilience and COD removal efficiencies in excess of 80 % were achieved during shock loadings. However, both reactors were highly sensitive to changes in pH and any decrease in pH below the pKa values of the volatile fatty acids in the influent (pKa of acetic acid = 4.76) resulted in significant reductions in COD removal efficiencies. Maintenance of reactor pH above 5.0 was thus an essential facet of reactor operation. It has been reported that the VFA/alkalinity ratio can be used to assess the stability of biological reactors. The VFA/alkalinity ratios of the aerobic BFBRs containing sand and GAC as support matrices were stable (VFNalkalinity ratios of < 0.3 - 0.4) until the OLR increased above 10 kg/m3.d. At OLRs higher than 10 kg/m3.d the VFA/alkalinity ratios in the BFBR using sand support matrix increased to 4, above the failure limit value of 0.3 - 0.4. In contrast the VFA/alkalinity ratios of the BFBR using GAC support matrix remained stable until an OLR of 15 kg/m3.d was obtained, where the VFA/alkalinity ratios then increased to > 3. Towards the end of the study when an OLR of approximately 25 kg/m3.d was obtained the VFA/alkalinity ratios of both the BFBRs using sand and GAC as support matrices increased to 9 and 6 respectively, indicating the decrease in reactor stability and acidification of the process. Total solid (TS) and volatile solid (VS) concentrations in the aerobic BFBRs were initially high and decreased over time. While the total suspended solids (TSS) and volatile suspended solids (VSS) concentrations were initially low and increased over time as the OLR was increased, this is thought to be as a result of decreased HRT leading to biomass washout. The anaerobic BFBR using sand as support matrix never stabilised and COD removal efficiency remained very low (< 30 %), possibly due to the high levels of shear forces. Further studies concerning the use of sand as support matrix were subsequently terminated. An average COD removal efficiency of approximately 60 % was achieved in the anaerobic BFBR using GAC as a support matrix at organic loading rates lower than 10 kg COD/m3.d. The removal efficiency gradually decreased to 50 % as organic loading rates were increased to 20 kg COD/m3.d. At OLRs of 20 kg COD/m3.d, the biogas and methane yields of the anaerobic BFBR using GAC as support matrix were determined to be approximately 0.38 m3 biogas/kg CODrem (0.3 m3 biogas/m3reactor vol.d), and 0.20 m3 CH4/kg CODrem (0.23 m3 CH4/m3reactor vol.d), respectively. This value is 57 % of the theoretical maximum methane yield attainable (3.5 m3 CH4/kg CODrem). The methane yield increased as the OLR increased, however, when the OLR reached 8 kg/m3.d the methane yield levelled off and remained constant at approximately 2 m3 CH4/m3reactor vol.d. Although the methane content of the biogas was initially very low (< 30 %), the methane content gradually increased to 60 % at OLRs of 20 kg COD/m3.d. The anaerobic BFBR using GAC as support matrix determined that as the OLR increased (>12 kg/m3.d), the VFA/alkalinity ratio increased to approximately 5, this is indicative of the decrease in stability and acidification of the process. The anaerobic BFBR using GAC as support matrix experienced no problems with plug formation and channelling. This is due to the lower biomass production by anaerobic microorganisms than in the aerobic reactors. The TS and VS concentrations were lower than the aerobic concentrations but followed the same trend of decreasing over time, while the TSS and VSS concentrations increased due to decreased HRTs. The anaerobic BFBR was sensitive to dramatic variations in organic loading rates, pH and COD removal efficiencies decreased significantly after any shock loadings. Compared to the activated sludge systems currently being used for the biological treatment of Fischer-Tropsch reaction water at SASOL SynFuels, Secunda, South Africa, a seven-fold increase in OLR and a 55 % reduction in the specific air requirement was achieved using the aerobic BFBRs. The methane produced could also be used as an alternative source of energy. It is, however, evident that the support matrix has a significant influence on reactor performance. Excellent results were achieved using sand and GAC as support matrices in the aerobic and anaerobic BFBRs, respectively. It is thus recommended that future research be conducted on the optimisation of the use of aerobic and anaerobic BFBRs using these support matrices. Based on the results obtained from this study, it can be concluded that both aerobic and anaerobic treatment of a synthetic effluent analogous to the Fischer-Tropsch reaction water as generated by SASOL in the Fischer-Tropsch Synthol process were successful and that the application of fluidised-bed reactors (attached growth systems) could serve as a feasible alternative technology when compared to the current activated sludge treatment systems (suspended growth) currently used. Keywords: aerobic treatment, anaerobic treatment, biological fluidised-bed reactors, petrochemical effluent, Fischer-Tropsch reaction water, industrial wastewater. / Thesis (M. Omgewingswetenskappe)--North-West University, Potchefstroom Campus, 2004.
28

Evaluation of fluidised-bed reactors for the biological treatment of synthol reaction water, a high-strength COD petrochemical effluent / by Katharine Gaenor Aske Swabey

Swabey, Katharine Gaenor Aske January 2004 (has links)
Reaction water, a high-strength COD (chemical oxygen demand) petrochemical effluent, is generated during the Fischer-Tropsch reaction in the SASOL Synthol process at SASOL SynFuels, Secunda, South Africa. Distillation of the reaction water to remove non- and oxygenated hydrocarbons yields approximately 25 - 30 ML/d of an organic (carboxylic) acid-enriched stream (average COD of 16 000 mg/L) containing primarily C2 – C5 organic acids, light oils, aldehydes, ketones, cresols and phenols. Together with the Oily sewer water (API) and Stripped Gas Liquor (SGL) process streams, this process effluent is currently treated in ten dedicated activated sludge basins. However, the successful operation of these activated sludge systems has proven to be difficult with low organic loading rates (3.5 kg COD/m3.d) low COD removal efficiencies (<80 %) and high specific air requirements (60 - 75 m3 air/kg CODrem). It is hypothesised that these operational difficulties can be attributed to organic shock loadings, variation in volumetric and hydraulic loadings, as well as variations in the composition of the various process streams being treated. Due to the fact that the Fischer-Tropsch (Synthol) reaction water constitutes 70 % of the COD load on the activated sludge systems, alternative processes to improve the treatment cost and efficiency of the Fischer-Tropsch acid stream are being investigated. Various studies evaluating the aerobic and anaerobic treatment of Fischer-Tropsch reaction water alone in suspended growth wastewater treatment systems have proven unsuccessful. High rate fixed-film processes or biofilm reactors, of which the fluidised-bed reactors are considered to he one of the most effective and promising processes for the treatment of high-strength industrial wastewaters, could he a suitable alternative. The primary aim of this study was to evaluate the suitability of biological fluidised-bed reactors (BFBRs) for the treatment of Fischer-Tropsch reaction water. During this study, the use of aerobic and anaerobic biological fluidised-bed reactors (BFBR), using sand and granular activated carbon (GAC) as support matrices, were evaluated for the treatment of a synthetic effluent analogous to the Fischer-Tropsch reaction water stream. After inoculation, the reactors were operated in batch mode for 10 days at a bed height expansion of 30% and a temperature of 30 ºC to facilitate biofilm formation on the various support matrices. This was followed by continuous operation of the reactors at hydraulic retention times (HRTs) of 2 days. While the COD of the influent and subsequent organic loading rate (OLR) was incrementally increased from 1 600 mg/L to a maximum of 20 000 mg/L and 18 000 mg/L for the aerobic and anaerobic reactors, respectively. Once the maximum influent COD concentration had been achieved the OLR was further increased by decreasing the HRTs of the aerobic and anaerobic reactors to 24h and 8h, and 36h, 24h and 19h, respectively. The dissolved O2 concentration in the main reactor columns of the aerobic reactors was constantly maintained at 0.50 mg/L. Chemical Oxygen Demand (COD) removal efficiencies in excess of 80 % at OLR of up to 30 kg COD/m3.d were achieved in the aerobic BFBRs using both sand and GAC as support matrices. Specific air requirements were calculated to be approximately 35 and 41 m3 air/kg CODrem for the BFBRs using sand and GAC as support matrices, respectively. The oxygen transfer efficiency was calculated to be approximately 5.4 %. At high OLR (> 15 kg COD/m3.d) significant problems were experienced with plugging and subsequent channelling in the BFBR using GAC as support matrix and the reactor had to be backwashed frequently in order to remove excess biomass. Despite these backwash procedures, COD removal efficiencies recovered to previous levels within 24 hours. In contrast, no significant problems were encountered with plug formation and channelling in the BFBR using sand as support matrix. In general the overall reactor performance and COD removal efficiency of the aerobic BFBR using sand as support matrix was more stable and consistent than the BFBR using GAC as support matrix. This BFBR was also more resilient to variations in operational conditions, such as the lowering of the hydraulic retention times and changes in the influent pH. Both aerobic reactors displayed high resilience and COD removal efficiencies in excess of 80 % were achieved during shock loadings. However, both reactors were highly sensitive to changes in pH and any decrease in pH below the pKa values of the volatile fatty acids in the influent (pKa of acetic acid = 4.76) resulted in significant reductions in COD removal efficiencies. Maintenance of reactor pH above 5.0 was thus an essential facet of reactor operation. It has been reported that the VFA/alkalinity ratio can be used to assess the stability of biological reactors. The VFA/alkalinity ratios of the aerobic BFBRs containing sand and GAC as support matrices were stable (VFNalkalinity ratios of < 0.3 - 0.4) until the OLR increased above 10 kg/m3.d. At OLRs higher than 10 kg/m3.d the VFA/alkalinity ratios in the BFBR using sand support matrix increased to 4, above the failure limit value of 0.3 - 0.4. In contrast the VFA/alkalinity ratios of the BFBR using GAC support matrix remained stable until an OLR of 15 kg/m3.d was obtained, where the VFA/alkalinity ratios then increased to > 3. Towards the end of the study when an OLR of approximately 25 kg/m3.d was obtained the VFA/alkalinity ratios of both the BFBRs using sand and GAC as support matrices increased to 9 and 6 respectively, indicating the decrease in reactor stability and acidification of the process. Total solid (TS) and volatile solid (VS) concentrations in the aerobic BFBRs were initially high and decreased over time. While the total suspended solids (TSS) and volatile suspended solids (VSS) concentrations were initially low and increased over time as the OLR was increased, this is thought to be as a result of decreased HRT leading to biomass washout. The anaerobic BFBR using sand as support matrix never stabilised and COD removal efficiency remained very low (< 30 %), possibly due to the high levels of shear forces. Further studies concerning the use of sand as support matrix were subsequently terminated. An average COD removal efficiency of approximately 60 % was achieved in the anaerobic BFBR using GAC as a support matrix at organic loading rates lower than 10 kg COD/m3.d. The removal efficiency gradually decreased to 50 % as organic loading rates were increased to 20 kg COD/m3.d. At OLRs of 20 kg COD/m3.d, the biogas and methane yields of the anaerobic BFBR using GAC as support matrix were determined to be approximately 0.38 m3 biogas/kg CODrem (0.3 m3 biogas/m3reactor vol.d), and 0.20 m3 CH4/kg CODrem (0.23 m3 CH4/m3reactor vol.d), respectively. This value is 57 % of the theoretical maximum methane yield attainable (3.5 m3 CH4/kg CODrem). The methane yield increased as the OLR increased, however, when the OLR reached 8 kg/m3.d the methane yield levelled off and remained constant at approximately 2 m3 CH4/m3reactor vol.d. Although the methane content of the biogas was initially very low (< 30 %), the methane content gradually increased to 60 % at OLRs of 20 kg COD/m3.d. The anaerobic BFBR using GAC as support matrix determined that as the OLR increased (>12 kg/m3.d), the VFA/alkalinity ratio increased to approximately 5, this is indicative of the decrease in stability and acidification of the process. The anaerobic BFBR using GAC as support matrix experienced no problems with plug formation and channelling. This is due to the lower biomass production by anaerobic microorganisms than in the aerobic reactors. The TS and VS concentrations were lower than the aerobic concentrations but followed the same trend of decreasing over time, while the TSS and VSS concentrations increased due to decreased HRTs. The anaerobic BFBR was sensitive to dramatic variations in organic loading rates, pH and COD removal efficiencies decreased significantly after any shock loadings. Compared to the activated sludge systems currently being used for the biological treatment of Fischer-Tropsch reaction water at SASOL SynFuels, Secunda, South Africa, a seven-fold increase in OLR and a 55 % reduction in the specific air requirement was achieved using the aerobic BFBRs. The methane produced could also be used as an alternative source of energy. It is, however, evident that the support matrix has a significant influence on reactor performance. Excellent results were achieved using sand and GAC as support matrices in the aerobic and anaerobic BFBRs, respectively. It is thus recommended that future research be conducted on the optimisation of the use of aerobic and anaerobic BFBRs using these support matrices. Based on the results obtained from this study, it can be concluded that both aerobic and anaerobic treatment of a synthetic effluent analogous to the Fischer-Tropsch reaction water as generated by SASOL in the Fischer-Tropsch Synthol process were successful and that the application of fluidised-bed reactors (attached growth systems) could serve as a feasible alternative technology when compared to the current activated sludge treatment systems (suspended growth) currently used. Keywords: aerobic treatment, anaerobic treatment, biological fluidised-bed reactors, petrochemical effluent, Fischer-Tropsch reaction water, industrial wastewater. / Thesis (M. Omgewingswetenskappe)--North-West University, Potchefstroom Campus, 2004.
29

Interferência dos metais zinco, chumbo e cobre, no processo de nitrificação no tratamento de efluentes de uma indústria química: estudo de caso / not available

Leonidia Maria de Castro 21 May 2001 (has links)
Durante o estudo de um sistema de tratamento de efluentes de uma indústria química, contendo em suas águas residuárias vários metais pesados foi observada a ineficiência no processo de nitrificação do efluente tratado. Diante dessa constatação, desenvolveu-se este trabalho visando estudar as interferências dos metais pesados, Pb2+, Zn2+ e Cu2+ no desempenho do processo de nitrificação em um sistema similar de tratamento. Para observação dos efeitos dos metais Zn2+, Pb2+ e Cu2+ isoladamente, foram montados 3 reatores e simuladas as concentrações afluentes do tanque de aeração da indústria. Outros três reatores alimentados com soluções contendo Zn+Cu, Zn+Pb e Pb+Cu utilizados para observação de possíveis efeitos de sinergismo e antagonismo. Um outro reator foi alimentado com a solução dos três metais (Zn2+, Cu2+ e Pb2+). Todos os reatores, recebendo adição de metal ou não, apresentaram concentrações muito elevadas de nitrito. Na realização do ensaio de NMP ficou evidente a inibição dos organismos oxidantes de nitrito, que pode ter ocorrido pela alta concentração do próprio nitrito, ácido nitroso ou amônia livre. Efeitos dos metais Zn2+ e Cu2+ não foram evidentes, o Pb2+ foi o único metal que apresentou efeito de inibição no processo de nitrificação. Os reatores que receberam combinação de íons metálicos não evidenciaram efeitos de sinergismo nem antagonismo, sendo que o reator que recebeu adição dos três íons apresentou menor eficiência. / During the study of the chemical industry effluent treatment system containing, several heavy metals, was observed an inefficiency in the nitrification process in final effluent. Therefore, this work was deve!oped to find out ofthe study of the interference of the heavy metals, Pb2+, Zn2+ and Cu2+ on the performance of nitrification process in a similar system of treatment. For observation of the effects of metals Zn2+, Pb2+ and Cu2+ separately, were established three reactors and simulate the influent concentration in the aeration tank of the industry. Other three reactors were fed with solution containing Zn+Cu, Zn+Pb and Pb+Cu for observation of possible synergism or antagonism effects. The other reactor was fed with a solution of the three metals (Zn2+, Cu2+ and Pb2+). All the reactors, receiving the addition of metaIs or not, presented very high concentrations of nitrite. In the realization of the test of NMP, the inhibition of the nitrite oxidizers organisms was evident, that might have happened due to high concentration of nitrous acid, free ammonia and nitrite. The effects of the metals Zn2+ and Cu2+ were not evident; but the Pb2+ was the only metal that presented inhibition effect in the nitrification process. The reactors that received the metallic ion combination didn\'t evidence neither synergism nor antagonism effects, however the reactor that received the addition of the three ions presented smaller efficiency.
30

Estratégias de operação de reatores aeróbio/anóxico operados em batelada sequencial para remoção de nitrogênio de água residuária industrial / Strategies of operation of aerobic/anoxic sequential batch reactors for industrial wastewater nitrogen removal

Alexandre Fernandes Ono 27 July 2007 (has links)
A pesquisa propôs avaliar o desempenho e o comportamento de reatores seqüenciais em batelada com biomassa suspensa e imobilizada, em escala de bancada, na remoção de compostos de nitrogênio. Tais sistemas foram testados como tratamento complementar de reatores sulfetogênico e metanogênico utilizados no tratamento de água residuária industrial com alta concentração de sulfato e amônia. Visou o desenvolvimento de uma estratégia de operação que viabilizasse o uso dos próprios constituintes da água residuária para a maximização da eficiência do tratamento. O estudo foi dividido em 3 etapas principais. Na etapa 1 (181 dias de operação), o reator com biomassa suspensa foi mantido com 4 fases alternadas aeróbio/anóxico e ciclo de 24 horas, e verificou-se a presença da desnitrificação endógena (eficiência de remoção de nitrogênio de 65 \'+ OU -\' 27%). Para a etapa 2 (127 dias de operação), o reator de biomassa suspensa foi submetido ao tempo de ciclo de 12 horas, com uma fase aeróbia (6 horas) e com posterior fase anóxica (6 horas). Nessa etapa adicionou-se efluentes dos reatores metanogênico e sulfetogênico, ricos em ácidos voláteis (ácido acético), com intuito de acelerar o processo desnitrificante. Os resultados obtidos foram baixos em termos de remoção de nitrogênio (42 \'+ OU -\' 21%). Para a etapa 3 (134 dias de operação), foram ensaiados vários meios suportes, através de técnica de microsensores de oxigênio dissolvido, a fim de verificar a formação de biofilme específico (nitrificante/desnitrificante) e optou-se pelo uso do carvão mineral no reator com biomassa imobilizada. Nesta última etapa, foi mantida a estratégia operacional adotada na etapa 2 (ciclo 12 horas), bem como a adição de parcela do afluente na fase anóxica. A remoção de nitrogênio, com períodos aeróbio e anóxico e ciclo de 12 horas, mostrou-se viável no reator com biomassa imobilizada (eficiência de remoção de nitrogênio de 72 \'+ OU -\' 13%). Ao final dos ensaios experimentais, realizaram-se modelagens cinéticas que permitiram a compreensão dos processos convencionais e não convencionais ocorridos nas várias etapas para remoção de nitrogênio, tais como desnitrificação em fase aeróbia e o processo ANAMMOX. / The purpose of this research was to evaluate the performance and the behavior of sequential batch reactors with suspended and immobilized biomass, in benches scale, for the nitrogen composite removal. Such systems had been tested as sulphetogenic and methanogenic reactors complementary treatment, used in an industrial waste water treatment with high sulphate and ammonia concentrations. The research aimed for the development of an operation strategy that could make possible the use of the proper waste water constituent for the improvement of the treatment efficiency. The study was divided into 3 main stages. In stage 1 (181 days of operation), the reactor with suspended biomass was kept with 4 alternating phases aerobic/anoxic and a 24-hour cycle was used, and the endogenous denitrification was verified (nitrogen removal efficiency of 65 \'+ OU -\' 27%). For stage 2 (127 days of operation), the suspended biomass reactor was submitted to a cycle of 12 hours, with an aerobic phase (6 hours) and posterior anoxic phase (6 hours). In this stage effluent of the methanogenic and sulphetogenic reactors, rich in volatile acid (acetic acid), was added to accelerate the denitrify process. The achieved results had been low in terms of nitrogen removal(42 \'+ OU -\' 21%). For stage 3 (134 days of operation), some supports media was tested through dissolved oxygen microsensors technique, in order to check the specific biofilm formation (nitrificant/denitrificant) and the mineral coal was opted to be used in the immobilized biomass reactor. In this last stage it was adopted an operational strategy similar in stage 2 (12 hours cycle), as well as the addition of part of the affluent in the anoxic phase. The nitrogen removal, with aerobic and anoxic periods and 12 hours cycle, revealed feasible in the reactor with immobilized biomass (nitrogen removal efficiency of 72 \'+ OU -\' 13%). In the end of the experimental tests, kinetic modelings were done and had allowed the understanding of conventional and not conventional processes occurred in the stages for nitrogen removal, such as desnitrification in aerobic phase and ANAMMOX process.

Page generated in 0.0775 seconds