Spelling suggestions: "subject:"inertial confinement Fusion"" "subject:"inertial konfinement Fusion""
21 |
Application of convection heat transfer in near-wall jets to electron-beam-pumped gas lasersLu, Bo 07 July 2010 (has links)
Heating of the transmission foil separating the vacuum diodes from the laser cell in electron-beam-pumped gas lasers due to electron beam attenuation necessitates an active cooling scheme to prevent its failure under repetitively pulsed operating conditions. Attenuation of the electron beam (typically 500kV, 100kA and 100ns) produces a strong and pulsed volumetric heat source in the relatively thin (~25μm thick) stainless-steel foil causing it to fail. An experimental and numerical investigation has been conducted to study the cooling effectiveness of high-speed near-wall jets for a single stainless-steel foil strip simulating the geometry between two hibachi ribs in the Electra KrF gas laser developed by the Naval Research Laboratory. The foil is placed inside a channel with continuous gas flow simulating the circulating laser gas. Detailed studies include two jet types (planar and circular) and two injection methods (parallel and impinging) for two designs of hibachi (flat and scalloped). The planar jet flows parallel to the circulating laser gas along the entire foil span. The other configuration uses small diameter (0.8, 1.2 and 1.6 mm) circular jets positioned in two staggered rows located on the foil's two edges along the height of the foil (~30 cm). The jets are issued obliquely towards the foil. For both jet configurations, experiments are conducted at different jet velocities, impingement angles and jet-foil spacing to identify the optimal parameters to be used in the actual hibachi foil cooling. Experimental results are also compared to the predictions from CFD simulations using FLUENT®. The results of this research show that near-wall impinging circular jets can effectively cool the foil separating the vacuum diodes from the laser cell in an electron beam pumped KrF laser under prototypical pulsed (5Hz) operating conditions, thereby assuring the foil's survival, while minimizing the impact on electron beam quality and laser efficiency.
|
22 |
Génération de très hautes pressions d'ablation laser et de chocs forts pour l'allumage des réactions de fusion nucléaire / High ablation pressure and strong shock generation for nuclear fusionLlor Aisa, Emma 17 February 2017 (has links)
Le schéma d'allumage par choc est une approche prometteuse pour obtenir de l'énergie à grande échelle. Cependant, ce schéma requière des pressions d'ablation laser de l'ordre de 300-400 Mbar pour atteindre l'allumage. L'objectif de cette thèse est de mieux comprendre la physique sous-jacente de la génération de ces pressions très élevées par les mécanismes du transport de l'énergie par les électrons énergétiques dans un régime d'intensité laser entre un et dix petawatt par cm2. Au cours de cette thèse il a été établi un modèle permettant de calculer la pression du choc induit par les électrons chauds et le temps de sa formation pour une distribution en énergie d'électrons et un profil de densité de plasma arbitraire. Nous montrons que la distribution en énergie d'électrons plus étendue conduit à un dépôt en énergie plus homogène ce qui implique un temps de formation du choc plus long et une diminution de la force du choc. Ces conséquences sont à prendre en compte pour le design des cibles pour l'allumage par choc. L'extension de ce modèle au cas d'un plasma inhomogène montre que la couronne de faible densité diminue l'énergie des électrons rapides et donc la quantité d'énergie déposée dans la cible comprimée. Ceci conduit à une réduction du temps nécessaire à la formation du choc, de la pression du choc et de l'efficacité de la conversion de l'énergie des électrons vers l'onde de choc. Ce modèle théorique nous permet d'interpréter l'expérience de la génération d'un choc sphérique sur l'installation laser OMEGA. Grâce à la comparaison des simulations numériques d'un tir représentatif aux résultats expérimentaux nous avons caractérisé la source d'électrons ainsi que la pression et la dynamique du choc. Enfin, nous proposons un design préliminaire de l'expérience sur le rôle des électrons chauds dans la création d'un choc plan sur l'installation LMJ-PETAL. / The Shock Ignition (SI) scheme is a promising approach to obtaining energy on alarge scale. However, this scheme needs ablation pressures in the range of 300-400Mbar to reach ignition. The objective of this thesis is therefore to better understandthe underlying physics of high pressure generation by energetic electrons in a regimeof intensity between one and ten petawatt per cm2. In this thesis, a model hasbeen established for calculating the shock pressure generated by hot electrons andthe time of its formation for an arbitrary electron energy distribution and plasmadensity profile. It is shown that a broader electron energy distribution leads to amore homogeneous energy deposition which implies a longer shock time formationand a reduction of the shock strength. These consequences should be taken intoaccount in shock ignition target design. The extension of this model to the case ofa inhomogeneous plasma shows that the low density corona decreases fast electrons energy and then the amount of energy deposited in the compressed target. This leads to a reduction of the time needed for the shock formation, of the shock pressure and the energy invested in the shock. This theoretical model allows us to interpret the experiment performed in spherical geometry on the OMEGA laser facility. The comparison between numerical simulations and experimental results allow us to characterize the electron source as well as shock pressure and dynamic. Finally, we propose a preliminary design of an experiment to explore the hot electron role in shock generation in planar geometry on the LMJ-PETAL laser facility.
|
23 |
Magnetic field in laser plasmas : non-local electron transport and reconnection / Champ magnétique dans les plasmas laser : transport électronique non-local et reconnexionRiquier, Raphaël 28 January 2016 (has links)
Dans le cadre de la fusion par confinement inertiel, une capsule contenant le combustible de deutérium-tritium est implosée soit par irradiation laser (attaque directe, interaction laser – cible de numéro atomique faible), soit par un rayonnement de corps noir émis par une cavité convertissant le rayonnement laser (attaque indirecte, interaction laser – cible de numéro atomique élevé).Dans les deux cas, une modélisation correcte du transport électronique est cruciale pour avoir des simulations hydro-radiatives prédictives. Cependant, il a été montré très tôt que les hypothèses d'un mécanisme de transport linéaire ne sont pas applicables dans le cadre de l'irradiation d'une cible solide par un laser de puissance (I~10^14 W/cm²). Cela est dû d'une part à des gradients de température très importants (effets cinétiques dits « non-locaux ») ainsi qu'à la présence d'un champ magnétique auto-généré par effet thermo-électrique. Enfin, le flux de chaleur et le champ magnétique sont fortement couplés au travers de deux mécanismes : le transport du champ magnétique par le flux de chaleur (effet Nernst) et la rotation et inhibition du flux de chaleur par la magnétisation du plasma (effet Righi-Leduc).Dans le présent manuscrit, nous commencerons par exposer les différents modèles de transport électronique, et en particulier le modèle non-local avec champ magnétique, implémenté dans le code hydro-radiatif FCI2. Par la suite, nous chercherons à valider ce modèle par des comparaisons avec un code cinétique, puis avec une expérience lors de laquelle le champ magnétique a été mesuré par radiographie proton. Cela fait, nous utiliserons le code FCI2 pour expliquer la source et le transport du champ, ainsi que son effet sur l'interaction.Enfin, nous étudierons la reconnexion du champ magnétique, lors de l'irradiation d'une cible par deux faisceaux lasers. / In the framework of the inertial confinement fusion, a pellet filled with the deuterium-tritium fuel is imploded, either through laser irradiation (direct drive, laser – low atomic number target interaction) or by the black body radiation from a cavity converting the laser radiation (indirect drive, laser – high atomic number target interaction).In both cases, a correct modeling of the electron transport is of first importance in order to have predictive hydro-radiative simulations. Nonetheless, it has been shown early on that the hypothesis of the linear transport are not valid in the framework of a solid target irradiated by a high power laser (I~1014 W/cm²). This is due in part to very steep temperature gradients (kinetic effects, so-called « non-local ») and because of a magnetic field self-generated through the thermo-electric effect. Finally, the heat flux and the magnetic field are strongly coupled through two mecanisms: the advection of the field with the heat flux (Nernst effect) and the rotation and inhibition of the heat flux by the plasma's magnetization (Righi-Leduc effect).In this manuscript, we will first present the various electron transport models, particularly the non-local with magnetic field model included in the hydro-radiative code FCI2. Following, in order to validate this model, we will compare it first against a kinetic code, and then with an experiment during which the magnetic field has been probed through proton radiography. Once the model validated, we will use FCI2 simulations to explain the source and transport of the field, as well as its effect on the interaction.Finally, the reconnection of the magnetic field, during the irradiation of a solid target by two laser beams, will be studied.
|
24 |
Etude numérique et modélisation des instabilités hydrodynamiques dans le cadre de la fusion par confinement inertiel en présence de champs magnétiques auto-générés / Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fieldsLevy, Yoann 13 July 2012 (has links)
Dans le cadre de la fusion par confinement inertiel, nous présentons une analyse des effets du champ magnétique sur le développement linéaire des instabilités de Richtmyer-Meshkov, en magnétohydrodynamique idéale d’une part, et de Rayleigh-Taylor au front d’ablation, dans les phases d’accélération et de décélération d’autre part.A l’aide d’un code linéaire de perturbation, nos simulations mono mode nous permettent de confirmer, pour l’instabilité de Richtmyer-Meshkov, la stabilisation apportée par la composante du champ magnétique parallèle au vecteur d’onde des perturbations de l’interface, dont l’amplitude oscille au cours du temps. Nous montrons que la prise en compte de la compressibilité n’apporte pas de changements significatifs par rapport au modèle impulsionnel incompressible existant dans la littérature. Dans nos simulations numériques bidimensionnelles, en géométrie plane, de l’instabilité de Rayleigh-Taylor dans la phase d’accélération, nous prenons en compte le phénomène d’auto-génération de champ magnétique induite par cette instabilité. Nous montrons qu’il est possible d’atteindre des valeurs de champ de l’ordre de quelques teslas et que la croissance de l’amplitude des perturbations transite plus rapidement vers un régime de croissance non-linéaire avec, notamment, un développement accru de la troisième harmonique. Nous proposons également une adaptation d’un modèle existant, étudiant l’effet d’anisotropie de conductivité thermique sur le taux de croissance de l’instabilité de Rayleigh-Taylor au front d’ablation, pour tenter de prendre en compte les effets des champs magnétiques auto-générés sur le taux de croissance de l’instabilité de Rayleigh-Taylor. Enfin, dans une étude numérique à deux dimensions, en géométrie cylindrique, nous analysons les effets des champs magnétiques auto-générés par l’instabilité de Rayleigh-Taylor dans la phase de décélération. Cette dernière étude révèle l’apparition de champs magnétiques pouvant atteindre plusieurs milliers de teslas sans pour autant affecter le comportement de l’instabilité de Rayleigh-Taylor. / In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages.Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn’t grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model.As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate.Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of teslas that are not strong enough though to affect the instability behavior.
|
25 |
An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas / Une approche entropique au transport non local et aux autres phénomènes cinétiques dans les plasmas à hautes densités d'énergieDel Sorbo, Dario 14 December 2015 (has links)
Les simulations hydrodynamiques pour la physique de haute densité d'énergie ainsi que pour la fusion par confinement inertiel exigent une description détaillée de flux d'énergie. Le mécanisme principal est le transport électronique, qui peut être un phénoméne non local qui doit être décrit avec des modèles de Fokker-Planck, stationnaires et simplifiés dans les codes hydrodynamiques à grande échelle. Mon travail thèse est consacré au développement d'un nouveau modèle de transport non local basé sur l'utilisation d'une méthode de fermeture entropique pour la résolution des premiers moments de l'équation de Fokker-Planck agrémentée d'un opérateur de collision dédié. Une telle fermeture permet une bonne résolution des fortes anisotropies de la fonction de distribution électronique dans les régimes où le développement d'instabilités électrostatiques à petite échelle le requiert. Ce modèle aux moments (M1) est comparé avec succès au modèle de Schurtz, Nicolaï et Busquet (SNB), référent dans le domaine du transport électronique non local. Ce modèle, basé sur l'hypothèse d'une faible anisotropie de la fonction de distribution sous-jacente induisant une relation de fermeture polynomiale (P1), utilise un opérateur de collision simplifié dont nous avons proposé une amélioration. Après avoir considéré plusieurs configurations typiques de transport de chaleur, nous avons montré que le modèle M1 ultidimensionnel peut prendre naturellement en compte des effets d'un plasmas magnétisés sur le transport électronique. De plus, ce modèle permet de calculer des fonctions de distribution utiles aux études cinétiques comme la stabilité du plasma dans la zone de transport. Nous confirmons avec notre modèle que le transport d'énergie électronique peut fortement modifier l'amortissement des ondes de Langmuir et des ondes acoustiques ; contrairement aux modèles non locaux simplifiés, M1 décrit les modifications de la fonction de distribution et l'amortissement des ondes du plasma. La structure du modèle permet également de prendre en compte naturellement des champs magnétiques autogénérés, qui jouent un rôle crucial dans des simulations multidimensionnelles. Ces champs magnétiques pourraient également être étudiés pour concentrer l'énergie dans les schémas d'ignition. Enfin, nous montrons que le modèle M1 reproduit les résultats de la théorie locale élaborée par Braginskii pour tous les niveau de magnétisation et propose de nouveaux résultats pour le régime non local. Ce travail constitue une première validation de l'utilisation des fermetures entropiques, dans les régimes de faibles anisotropies, qui va s'ajouter aux tests dans les régimes fortement anisotropes. / Hydrodynamic simulations in high-energy-density physics and inertial con nement fusion require a detailed description of energy uxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolaï and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model reproduces the results of the local transport theory in plasma, developed by Braginskii, in a broad range of degrees of magnetization and predicts new results in the nonlocal regime. This work constitutes a first validation of the entropic closure assumption in the weakly-anisotropic regime. It can be added to the existing tests, in the strongly-anisotropic regimes.
|
26 |
Étude des propriétés statistiques d'une tache focale laser lissée et de leur influence sur la rétrodiffusion brillouin stimulée / Studies of the statistical properties of a smoothed laser focal spot and their influence on stimulated Brillouin backscatteringDuluc, Maxime 15 July 2019 (has links)
Dans le contexte de la fusion par confinement inertiel (FCI), le lissage optique est une technique utilisée pour obtenir une irradiation laser aussi homogène que possible, en modifiant les propriétés de cohérence temporelle et spatiale des faisceaux laser. L'utilisation du lissage optique est une nécessité sur les lasers de puissance comme le Laser MégaJoule (LMJ) pour limiter le développement des instabilités paramétriques issues de l'intéraction laser-plasma, et parmi elles, la rétrodiffusion Brillouin stimulée (RBS). Ces instabilités entraînent des défauts d'irradiation sur cible et peuvent aussi être une source d'endommagement dans la chaîne optique. Cependant ces techniques peuvent entraîner d'autres problèmes au niveau de la chaîne laser, tels que la conversion de modulation de phase en modulation d'amplitude (FM-AM), néfastes au bon déroulement des expériences et pouvant également endommager les chaînes laser.On comprend donc qu'il est nécessaire de trouver un compromis autour du lissage optique. L’évolution du compromis du lissage est cependant compliquée car la quantification des gains et des pertes est très difficile à établir. Ainsi, tant que la quantification n’est pas faite, le compromis n’évolue pas : le lasériste souhaite toujours moins de lissage et « l’expérimentateur » toujours plus de lissage mais aucun des deux ne peut apporter suffisamment d’éléments quantitatifs pour faire pencher la balance. Cette thèse propose donc de poser les premières briques permettant d'arriver à ce compromis pour le LMJ, à l'aide d'études théoriques et numériques.Nous comparons soigneusement le lissage longitudinal (LSSD) et transversal (TSSD) par dispersion spectrale dans une configuration de lissage idéale pour chaque cas. Avec des codes 3D, nous avons simulé la RBS dans un plasma d'or, typique des expériences de FCI et favorable au développement de la RBS. Nous montrons que, contrairement aux idées reçues, l'évolution temporelle de la RBS présente certaines différences entre les deux systèmes de lissage. Premièrement, les valeurs asymptotiques des niveaux de saturation ne sont pas tout à fait les mêmes. Avec une simple description des rayons et le calcul du gain RBS pour chaque rayon, nous avons pu expliquer cette différence. En outre, la dynamique de la RBS est également quelque peu différente. Nous avons montré que la dynamique RBS est déterminée par l'évolution temporelle des propriétés des surintensités et en particulier par la longueur d'interaction effective entre la lumière rétrodiffusée Brillouin et les points chauds. Cette longueur d'interaction effective dépend à la fois de la vitesse longitudinale et de la longueur des points chauds. En effet, la synchronisation des longueurs d'interaction effectives des deux schémas de lissage synchronise également la croissance des courbes de rétrodiffusion avant saturation.Nous montrons, également qu'il est possible de faire évoluer les paramètres de lissage du LMJ en illustrant une nouvelle façon de réduire la conversion FM-AM inévitablement présente dans les lasers de forte puissance. En répartissant le spectre total habituellement utilisé par un quadruplet (regroupement de 4 faisceaux), en deux parties de spectres identiques plus petits sur les faisceaux de gauche et de droite, la conversion FM en AM est considérablement réduite de 30% à 5% tout en maintenant la performance de lissage pour la RBS. Nous avons également montré que le temps de cohérence qui en résulte n'a aucun effet sur le niveau maximal de RBS atteint. De la même façon, il faudra étudier l'impact de ces évolutions sur d'autres instabilités telles que le diffusion Raman stimulée ou le transfert d'énergie par croisement de faisceaux. / In the context of inertial confinement fusion (ICF), optical smoothing is a technique used to obtain the most homogeneous laser irradiation possible, by modifying the temporal and spatial coherence properties of the laser beams. The use of optical smoothing is a necessity on high-power lasers such as the Laser Mégajoule (LMJ) to limit the development of parametric instabilities resulting from laser-plasma interaction, and among them, stimulated Brillouin backscattering (SBS). These instabilities lead to target irradiation defects and can also be a source of damage in the optical lines. However, these techniques can lead to other problems in the laser lines, such as the conversion of phase modulation to amplitude modulation (FM-to-AM), which is harmful to the proper conduct of the experiments and can also damage the laser optics.It is therefore a necessity to find a compromise around optical smoothing. The evolution of the smoothing compromise is however complicated because the quantification of gains and losses is very difficult to establish. Thus, as long as quantification is not done, the compromise does not evolve: the laserist always wants less smoothing and the experimentalist always more smoothing, but neither of them can bring enough quantitative elements to tip the balance. This thesis therefore proposes to lay the first groundwork for reaching this compromise for the LMJ, using theoretical and numerical studies.We carefully compare longitudinal (LSSD) and transverse (TSSD) smoothing by spectral dispersion in an ideal smoothing configuration for each case. With 3D codes, we simulated SBS in a gold plasma, typical of ICF experiments and favourable to the development of SBS. We show that, contrary to popular belief, the temporal evolution of SBS shows some differences between the two smoothing schemes. First, the asymptotic values of saturation levels are not quite the same. With a simple description using light rays and the calculation of the SBS gain for each ray, we were able to explain this difference. In addition, the dynamics of SBS are also somewhat different. We have shown that the SBS dynamics is determined by the temporal evolution of the properties of the hot-spots and in particular by the effective interaction length between the Brillouin backscattered light and the hot-spots. This effective interaction length depends on both the longitudinal velocity and the length of the hot-spots. Indeed, the synchronization of the effective interaction lengths of the two smoothing schemes also synchronizes the growth of the backscatter curves before saturation.We also show that it is possible to change the smoothing parameters of the LMJ by illustrating a new way to reduce the FM-to-AM conversion inevitably present in high-power lasers. By splitting the total spectrum usually used by a quadruplet (grouping of 4 beams) into two parts of smaller identical spectra on the left and right beams, the FM-to-AM conversion is significantly reduced from 30% to 5% while maintaining the smoothing performance for SBS. We have also shown that the resulting coherence time of the laser has no effect on the maximum level of SBS achieved. Similarly, the impact of these developments on other instabilities such as stimulated Raman scattering or crossed beam energy transfer will also need to be investigated.
|
27 |
Fast Electron Transport Study for Inertial Confinement Fusion / Etude du transport d'électrons Rapides pour la fusion par confinement inertielTouati, Michaël 10 June 2015 (has links)
Un nouveau mod`ele r´eduit pour le transport de faisceaux d’´electrons relativistes dans des solide ou des plasma denses est propos´e. Il est bas´e sur la r´esolution des deux premiers moments angulaires de l’´equation cin´etique relativiste, compl´et´es par une relation de fermeture d´eduite du principe de maximisation de l’entropie angulaire de Minerbo. Le mod`ele prend en compte aussi bien les effets collectifs du transport avec les champs ´electromagn´etiques auto g´en´er´es que les effets collisionnels li´es au ralentissement des ´electrons par collision sur les plasmons, les ´electrons li´es et les ´electrons libres du milieu ainsi que leur diffusion angulaire par collisions sur les ´electrons et les ions. Le mod`ele permet une r´esolution num´erique rapide des ´equations du transport de faisceau d’´electrons rapides tout en d´ecrivant l’´evolution cin´etique de leur fonction de distribution. Malgr´e le fait de travailler avec les grandeurs angulaires moyennes, le mod`ele a ´et´e valid´e par comparaison avec des solutions analytiques d´eriv´ees dans un cas acad´emique de transport de faisceau mono ´energ´etique et collimat´e dans un plasma dense et chaud d’Hydrog`ene ainsi qu’avec une simulation PIC hybride dans un cas r´ealiste de transport d’´electrons acc´el´er´es par laser dans une cible solide. Le mod`ele est appliqu´e `a l’´etude de l’´emission de photons Kα lors d’exp´eriences laser-plasma ainsi qu’a` la g´en´eration d’ondes de choc. / A new hybrid reduced model for relativistic electron beam transport in solids and dense plasmas is presented. It is based on the two first angular moments of the relativistic kinetic equation completed with the Minerbo maximum angular entropy closure. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the elec- trons in collisions with plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing the kinetic distribution function evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a collimated and monoenergetic electron beam propagating through a warm and dense Hydro- gen plasma and hybrid PIC simulation results in a realistic laser-generated electron beam transport in a solid target. The model is applied to the study of the emission of Kα photons in laser-solid experiments and to the generation of shock waves.
|
28 |
Laser-driven strong magnetic fields and high discharge currents : measurements and applications to charged particle transport / Forts champs magnétiques et décharges de courants intenses générés par laser : mesures et applications au transport de particules chargéesBailly-Grandvaux, Mathieu 20 March 2017 (has links)
La problématique de génération de champs magnétiques quasi-statiques intenses constitue un défi pour la physique de l’interaction laser-plasma. Proposé il y a 30 ans, l’utilisation de cibles "boucles" irradiées par laser se distinguent par leur design compact ne nécessitant aucune génération de courant pulsé en plus de la puissance laser et ont dévoilé récemment leur grand potentiel.Ce travail de thèse s’attache à la caractérisation des phénomènes physiques et au développement de cette technique. On a ainsi montré la génération de forts champs magnétiques quasi-statiques par interaction laser-matière (500 J, durée laser de 1 ns et intensité ~10^17 W/cm^2) atteignant une amplitude de plusieurs centaines de Teslas pendant 2 à 3 ns. L'évolution temporelle et la distribution spatiale des champs magnétiques ont été mesurés par trois diagnostics indépendants : sondes B-dot, rotation de Faraday et défléctométrie de protons. La caractérisation des mécanismes physiques sous-jacents ont aussi fait appel à des diagnostics de rayonnements X de la région irradiée par laser ainsi qu’à des mesures d’ombroscopie optique du fil de la boucle en expansion.Une application de ces champs au guidage magnétique d’électrons relativistes dans la matière dense a permis d'ouvrir de nouvelles perspectives au transport de hautes densités d’énergies dans la matière. En effet, en laissant suffisamment de temps pour que le champ magnétique pénètre dans la cible dense, une amélioration d’un facteur 5 de la densité d’énergie portée par les électrons après 50 µm de propagation a été mise en évidence.En outre, des décharges de courants intenses consécutives à l'irradiation par impulsion laser courtes (50 J, durée laser < 1 ps et intensité ~10^19 W/cm^2) ont été observées. Une imagerie protonique de la décharge a permis de mesurer la propagation d’une onde électromagnétique à des vitesses proches de la vitesse de la lumière. Cette onde d’une durée de ~ 40 ps a été utilisée comme lentille électromagnétique pour focaliser et sélectionner sur une bande étroite d'énergie un faisceau de protons de plusieurs MeV (jusqu’à 12 MeV) passant dans la boucle.Les résultats de ces différentes mesures et applications expérimentales ont été par ailleurs confrontées à des simulations et à des modèles analytiques.Les applications de cette thèse se déploient sur des aspects comme :- la fusion par confinement inertiel, en guidant des faisceaux d'électrons relativistes jusqu'au cœur de la capsule de combustible, tout en confinant les particules qui y déposent leur énergie ainsi que celles créées par les réactions de fusion nucléaire;- l'astrophysique et la planétologie de laboratoire, en générant des sources secondaires de particules énergétiques ou de rayonnement afin de porter la matière dense a de très hautes températures (matière tiède et dense), ou en magnétisant des plasmas pour reproduire des phénomènes astrophysiques à plus petite échelle au laboratoire;- et enfin le contrôle de faisceaux de particules chargées dans le vide pour le développement de sources laser dans le cadre d'applications s'effectuant à distance de la source notamment en science, dans l'industrie, ou même en médecine. / The problem of strong quasi-static magnetic field generation is a challenge in laser-plasma interaction physics. Proposed 30 years ago, the use of the laser-driven capacitor-coil scheme, which stands out for its compact design while not needing any additional pulsed power source besides the laser power, only recently demonstrated its potential.This thesis work aims at characterizing the underlying physics and at developing this scheme. We demonstrated the generation of strong quasi-static magnetic fields by laser (500 J, 1 ns-duration and ~10^17 W/cm^2 intensity) of several hundreds of Teslas and duration of 2-3 ns. The B-field space- and time-evolutions were characterized using three independent diagnostics: B-dot probes, Faraday rotation and proton-deflectometry). The characterization of the underlying physical processes involved also X-ray diagnostics of the laser-irradiated zone and optical shadowgraphy of the coil rod expansion.A novel application of externally applied magnetic fields to guide relativistic electron beam in dense matter has been carried out and the obtained results set the ground for improved high-energy-density transport in matter. Indeed, allowing sufficient time for the dense target magnetization, a factor 5 improvement of the electron energy-density flux at 50µm-depth was evidenced.Besides, the generation of high discharge currents consecutive to short laser pulse irradiation (50 J, <1 ps-duration and ~10^19 W/cm^2 intensity) was also pointed out. Proton imaging of the discharge permitted to measure the propagation of an electromagnetic wave at a velocity close to the speed of light. This wave, of ~40ps-duration, was used as an electromagnetic lens to focalize and energy-select a narrow energy range within a multi-MeV proton beam (up to 12 MeV) passing through the coil.All-above experimental measurements and application results were thoroughly compared to both computer simulations and analytic modeling.The applications of this thesis work in a near future will concern:- inertial confinement fusion, by guiding relativistic electron beams up to the dense core nuclear fuel, and by confining particles depositing their energy in it, or even those resulting from the fusion reactions;- laboratory planetology and astrophysics, by generating secondary sources of energetic particles and radiation to reach the warm-dense-matter state or by magnetizing plasmas to reproduce astrophysical phenomena in scaled experiments;- and finally, the control of charged particle beams in vacuum, useful in particular for the development of laser-driven sources for distant applications in science, industry or even medecine.
|
29 |
Etude expérimentale des conditions initiales de l'instabilité de Rayleigh-Taylor au front d'ablation en fusion par confinement inertiel / Experimental study of the initial conditions of the Rayleigh-Taylor instability at the ablation front in inertial confinement fusionDelorme, Barthélémy 21 January 2015 (has links)
Les différents dimensionnements et expériences de Fusion par Confinement Inertiel (FCI) en attaque directe comme indirecte montrent qu'une des principales limites à l'atteinte de l'ignition est l'instabilité de Rayleigh-Taylor (IRT) qui cause la rupture de la coquille de la cible en vol et potentiellement le mélange du combustible chaud du coeur avec celui, froid, de la coquille. La connaissance, la compréhension et la maîtrise des conditions initiales de ce mécanisme sont donc d'un grand intérêt. Nous présentons ainsi une étude expérimentale et théorique des conditions initiales de l'IRT ablative en attaque directe au travers de deux campagnes expérimentales réalisées sur le laser OMEGA (LLE, Rochester). La première campagne concerne l'étude de l'instabilité de Richtmyer-Meshkov (IRM) ablative imprimée par laser ; cette instabilité commence à se développer au début de l'irradiation laser et fixe l'ensemencement de l'IRT. Nous avons mis en place une configuration expérimentale qui a permis de mesurer l'évolution temporelle de l'IRM ablative imprimée par laser pour la première fois. Nous présentons ensuite une interprétation des résultats de cette expérience par des simulations hydrodynamiques réalisées avec le code CHIC, ainsi que par un modèle théorique de l'IRM ablative imprimée par laser. Nous montrons que le moyen le plus direct de contrôler cette instabilité est de réduire l'amplitude des défauts d'intensité laser. Ceci peut être accompli en utilisant des cibles couvertes par une couche de mousse de basse densité. Ainsi, lors de la deuxième campagne, nous avons étudié pour la première fois l'effet de mousses sous-denses sur la croissance de l'IRT ablative. Au cours de ces expériences, des feuilles de plastique recouvertes d'une couche de mousse ont été irradiées par un faisceau laser portant une perturbation d'intensité destinée à imprimer des modulations sur la cible. Différentes données expérimentales sont présentes : rétrodiffusion de l'énergie laser, dynamique de la cible obtenue par mesure de côté d'auto-émission et radiographies de face faisant apparaître l'effet des mousses sur les modulations de densité surfacique des cibles. Ces données ont ensuite été interprétées à l'aide de simulations CHIC et du code d'interaction laser-plasma PARAX. Nous montrons qu'une des mousses réduit l'amplitude des modulations de l'intensité laser d'un facteur 2. Par conséquent, cette thèse a donné lieu au développement de configurations expérimentales et d'un ensemble d'outils de dépouillement numériques pour l'étude approfondie des instabilités hydrodynamiques en FCI. / Numerous designs and experiments in the domain of Inertial Confinement Fusion (ICF) show that, in both direct and indirect drive approaches, one of the main limitations to reach the ignition is the Rayleigh-Taylor instability (RTI). It may lead to shell disruption and performance degradation of spherically imploding targets. Thus, the understanding and the control of the initial conditions of the RTI is of crucial importance for the ICF program. In this thesis, we present an experimental and theoretical study of the initial conditions of the ablative RTI in direct drive, by means of two experimental campaigns performed on the OMEGA laser facility (LLE, Rochester). The first campaign consisted in studying the laser-imprinted ablative Richtmyer-Meshkov instability (RMI) which starts at the beginning of the interaction and seeds the ablative RTI.We set up an experimental configuration that allowed to measure for the first time the temporal evolution of the laser-imprinted ablative RMI. The experimental results have been interpreted by a theoretical model and numerical simulations performed with the hydrodynamic code CHIC. We show that the best way to control the ablative RMI is to reduce the laser intensity inhomogeneities. This can be achieved with targets covered by a layer of a low density foam. Thus, in the second campaign, we studied for the first time the effect of underdense foams on the growth of the ablative RTI. A layer of low density foam was placed in front of a plastic foil, and the perturbation was imprinted by an intensity modulated laser beam. Experimental data are presented : backscattered laser energy, target dynamic obtained by side-on selfemission measurement, and face-on radiographs showing the effect of the foams on the target areal density modulations. These data were interpreted using the CHIC code and the laser-plasma interaction code PARAX. We show that the foams noticeably reduce the amplitude of the laser intensity inhomogeneities and the level of the subsequent imprinted ablation front modulations. In conclusion, this thesis allowed us to develop an experimental platform and a suite of numerical tools for future, more detailed studies of hydrodynamic instabilities for ICFapplications.
|
30 |
Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion / Modélisation hydrodynamique du schéma d'allumage par choc pour la fusion par confinement inertielVallet, Alexandra 20 November 2014 (has links)
Le schéma d'allumage par choc pour la fusion par confinement inertiel utilise une impulsion laser intense à la fin d'une phase d'assemblage de combustible. Les paramètres clefs de ce schéma sont la génération d'une haute pression d'ablation, l'amplification de la pression du choc généré par un facteur supérieur à cent et le couplage du choc avec le point chaud de la cible. Dans cette thèse, de nouveaux modèles semi-analytiques sont développés afin de décrire le choc d'allumage depuis sa génération jusqu'à l'allumage du combustible. Tout d'abord, un choc sphérique convergent dans le coeur pré-chauffé de la cible est décrit. Le modèle est obtenu par perturbation de la solution auto-semblable de Guderley en tenant compte du nombre de Mach du choc élevé mais fini. La correction d'ordre un tient compte de l'effet de la force du choc. Un critère d'allumage analytique est exprimé en fonction de la densité surfacique du point chaud et de la pression du choc d'allumage. Le seuil d'allumage est plus élevé pour un nombre de Mach faible. Il est montré que la pression minimale du choc, lorsqu'il entre dans le coeur de la cible, est de 20Gbar. La dynamique du choc dans la coquille en implosion est ensuite analysée. Le choc se propage dans un milieu non inertiel avec un fort gradient de pression et une augmentation temporelle générale de la pression. La pression du choc est amplifiée plus encore durant la collision avec une onde de choc divergente provenant de la phase d'assemblage. Les modèles analytiques développés permettent une description de la pression et de la force du choc dans une simulation typique de l'allumage par choc. Il est démontré que, dans le cas d'une cible HiPER, une pression initiale du choc de l'ordre de 300 Mbar dans la zone d'ablation est nécessaire. Il est proposé une analyse des expériences sur la génération de chocs forts avec l'installation laser OMEGA. Il est montré qu'une pression du choc proche de 300Mbar est atteinte près de la zone d'ablation avec une intensité laser absorbée de l'ordre de 2 X 10(15) W.cm-2 et une longueur d'onde de 351 nm. Cette valeur de la pression est deux fois plus importante que la valeur attendue en considérant une absorption collisionnelle de l'énergie laser. Cette importante différence est expliquée par la contribution d'électrons supra-thermiques générés durant l'interaction laser/plasma dans la couronne. Les modèles analytiques proposés permettent une optimisation de l'allumage par choc lorsque les paramètres de la phase d'assemblage, sont pris en compte. Les diverses approches analytiques, numériques et expérimentales sont cohérentes entre-elles. / The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. the key feature of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. in this theses, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical concerging shock wave in a pre-heated hotspot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms >>1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength ans th hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is the analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an averall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytica theory allows to des cribe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is sown that a shock presssure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 x 10(15) W:cm-2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only. That significant pressure enhancement is explained by contribution of hot-electrons generated by non-linear laser/plasma interaction in the corona. The proposed analytical models allow to optimize the shock ignition scheme, including the inuence of the implosion parameters. Analytical, numerical and experimental results are mutualy consistent.
|
Page generated in 0.1534 seconds