• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise bayesiana de densidades aleatórias simples / Bayesian analysis of simple random densities

Paulo Cilas Marques Filho 19 December 2011 (has links)
Definimos, a partir de uma partição de um intervalo limitado da reta real formada por subintervalos, uma distribuição a priori sobre uma classe de densidades em relação à medida de Lebesgue construindo uma densidade aleatória cujas realizações são funções simples não negativas que assumem um valor constante em cada subintervalo da partição e possuem integral unitária. Utilizamos tais densidades aleatórias simples na análise bayesiana de um conjunto de observáveis absolutamente contínuos e provamos que a distribuição a priori é fechada sob amostragem. Exploramos as distribuições a priori e a posteriori via simulações estocásticas e obtemos soluções bayesianas para o problema de estimação de densidade. Os resultados das simulações exibem o comportamento assintótico da distribuição a posteriori quando crescemos o tamanho das amostras dos dados analisados. Quando a partição não é conhecida a priori, propomos um critério de escolha a partir da informação contida na amostra. Apesar de a esperança de uma densidade aleatória simples ser sempre uma densidade descontínua, obtemos estimativas suaves resolvendo um problema de decisão em que os estados da natureza são realizações da densidade aleatória simples e as ações são densidades suaves de uma classe adequada. / We define, from a known partition in subintervals of a bounded interval of the real line, a prior distribution over a class of densities with respect to Lebesgue measure constructing a random density whose realizations are nonnegative simple functions that integrate to one and have a constant value on each subinterval of the partition. These simple random densities are used in the Bayesian analysis of a set of absolutely continuous observables and the prior distribution is proved to be closed under sampling. We explore the prior and posterior distributions through stochastic simulations and find Bayesian solutions to the problem of density estimation. Simulations results show the asymptotic behavior of the posterior distribution as we increase the size of the analyzed data samples. When the partition is unknown, we propose a choice criterion based on the information contained in the sample. In spite of the fact that the expectation of a simple random density is always a discontinuous density, we get smooth estimates solving a decision problem where the states of nature are realizations of the simple random density and the actions are smooth densities of a suitable class.
2

Análise bayesiana de densidades aleatórias simples / Bayesian analysis of simple random densities

Marques Filho, Paulo Cilas 19 December 2011 (has links)
Definimos, a partir de uma partição de um intervalo limitado da reta real formada por subintervalos, uma distribuição a priori sobre uma classe de densidades em relação à medida de Lebesgue construindo uma densidade aleatória cujas realizações são funções simples não negativas que assumem um valor constante em cada subintervalo da partição e possuem integral unitária. Utilizamos tais densidades aleatórias simples na análise bayesiana de um conjunto de observáveis absolutamente contínuos e provamos que a distribuição a priori é fechada sob amostragem. Exploramos as distribuições a priori e a posteriori via simulações estocásticas e obtemos soluções bayesianas para o problema de estimação de densidade. Os resultados das simulações exibem o comportamento assintótico da distribuição a posteriori quando crescemos o tamanho das amostras dos dados analisados. Quando a partição não é conhecida a priori, propomos um critério de escolha a partir da informação contida na amostra. Apesar de a esperança de uma densidade aleatória simples ser sempre uma densidade descontínua, obtemos estimativas suaves resolvendo um problema de decisão em que os estados da natureza são realizações da densidade aleatória simples e as ações são densidades suaves de uma classe adequada. / We define, from a known partition in subintervals of a bounded interval of the real line, a prior distribution over a class of densities with respect to Lebesgue measure constructing a random density whose realizations are nonnegative simple functions that integrate to one and have a constant value on each subinterval of the partition. These simple random densities are used in the Bayesian analysis of a set of absolutely continuous observables and the prior distribution is proved to be closed under sampling. We explore the prior and posterior distributions through stochastic simulations and find Bayesian solutions to the problem of density estimation. Simulations results show the asymptotic behavior of the posterior distribution as we increase the size of the analyzed data samples. When the partition is unknown, we propose a choice criterion based on the information contained in the sample. In spite of the fact that the expectation of a simple random density is always a discontinuous density, we get smooth estimates solving a decision problem where the states of nature are realizations of the simple random density and the actions are smooth densities of a suitable class.
3

Um modelo Bayesiano semi-paramétrico para o monitoramento ``on-line\" de qualidade de Taguchi para atributos / A semi-parametric model for Taguchi´s On-Line Quality-Monitoring Procedure for Attributes

Tsunemi, Miriam Harumi 27 April 2009 (has links)
Este modelo contempla o cenário em que a sequência de frações não-conformes no decorrer de um ciclo do processo de produção aumenta gradativamente (situação comum, por exemplo, quando o desgaste de um equipamento é gradual), diferentemente dos modelos de Taguchi, Nayebpour e Woodall e Nandi e Sreehari (1997), que acomodam sequências de frações não-conformes assumindo no máximo três valores, e de Nandi e Sreehari (1999) e Trindade, Ho e Quinino (2007) que contemplam funções de degradação mais simples. O desenvolvimento é baseado nos trabalhos de Ferguson e Antoniak para o cálculo da distribuição a posteriori de uma medida P desconhecida, associada a uma função de distribuição F desconhecida que representa a sequência de frações não-conformes ao longo de um ciclo, supondo, a priori, mistura de Processos Dirichlet. A aplicação consiste na estimação da função de distribuição F e as estimativas de Bayes são analisadas através de alguns casos particulares / In this work, we propose an alternative model for Taguchi´s On-Line Quality-Monitoring Procedure for Attributes under a Bayesian nonparametric framework. This model may be applied to production processes the sequences of defective fractions during a cycle of which increase gradually (for example, when an equipment deteriorates little by little), differently from either Taguchi\'s, Nayebpour and Woodall\'s and Nandi and Sreehari\'s models that allow at most three values for the defective fraction or Nandi and Sreehari\'s and Trindade, Ho and Quinino\'s which take into account simple deterioration functions. The development is based on Ferguson\'s and Antoniak\'s papers to obtain a posteriori distribution for an unknown measure P, associated with an unknown distribution function F that represents the sequence of defective fractions, considering a prior mixture of Dirichlet Processes. The results are applied to the estimation of the distribution function F and the Bayes estimates are analised through some particular cases.
4

Um modelo Bayesiano semi-paramétrico para o monitoramento ``on-line\" de qualidade de Taguchi para atributos / A semi-parametric model for Taguchi´s On-Line Quality-Monitoring Procedure for Attributes

Miriam Harumi Tsunemi 27 April 2009 (has links)
Este modelo contempla o cenário em que a sequência de frações não-conformes no decorrer de um ciclo do processo de produção aumenta gradativamente (situação comum, por exemplo, quando o desgaste de um equipamento é gradual), diferentemente dos modelos de Taguchi, Nayebpour e Woodall e Nandi e Sreehari (1997), que acomodam sequências de frações não-conformes assumindo no máximo três valores, e de Nandi e Sreehari (1999) e Trindade, Ho e Quinino (2007) que contemplam funções de degradação mais simples. O desenvolvimento é baseado nos trabalhos de Ferguson e Antoniak para o cálculo da distribuição a posteriori de uma medida P desconhecida, associada a uma função de distribuição F desconhecida que representa a sequência de frações não-conformes ao longo de um ciclo, supondo, a priori, mistura de Processos Dirichlet. A aplicação consiste na estimação da função de distribuição F e as estimativas de Bayes são analisadas através de alguns casos particulares / In this work, we propose an alternative model for Taguchi´s On-Line Quality-Monitoring Procedure for Attributes under a Bayesian nonparametric framework. This model may be applied to production processes the sequences of defective fractions during a cycle of which increase gradually (for example, when an equipment deteriorates little by little), differently from either Taguchi\'s, Nayebpour and Woodall\'s and Nandi and Sreehari\'s models that allow at most three values for the defective fraction or Nandi and Sreehari\'s and Trindade, Ho and Quinino\'s which take into account simple deterioration functions. The development is based on Ferguson\'s and Antoniak\'s papers to obtain a posteriori distribution for an unknown measure P, associated with an unknown distribution function F that represents the sequence of defective fractions, considering a prior mixture of Dirichlet Processes. The results are applied to the estimation of the distribution function F and the Bayes estimates are analised through some particular cases.
5

Métodos estatísticos aplicados à análise da expressão gênica.

Saraiva, Erlandson Ferreira 23 February 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1 DissEFS.pdf: 1135537 bytes, checksum: b92ac0d09924bd51723ad77018da04de (MD5) Previous issue date: 2006-02-23 / Financiadora de Estudos e Projetos / The technology of the DNA-Arrays is a tool used to identify and to compare levels of expression of a great number of genes or fragments of genes, in di¤erent conditions. With this comparison, it is possible to identify genes possibly causing illnesses of genetic origin (cancer for example). Great amounts of numerical data (related the measures of levels of expression of the genes) are generated and statistical methods are important for analysis of this data with objective to identify the genes that present evidences for di¤erent levels of expression. The objective of our research is to develop and to describe methods statistical, capable of identifing genes that present evidences for di¤erent levels of expression. We describe the test t, considered for Baldi and Long (2001) and consider three others methods. The first method considered is based on the use of parametric Bayes inference and the methods for selection of models, Bayes factor and DIC; the second method is based an semi-parametric bayesian inference, model of mixtures of Dirichlet processes. The third method is based on the use of a model with infinite mixtures of distributions that applied the analysis of the genica expression determines groups of similar levels of expression. / A tecnologia dos arranjos de DNA (DNA-array) é uma ferramenta utilizada para identificar e comparar níveis de expressão de um grande número de genes ou fragmentos de genes simultaneamente, em condições diferentes. Com esta comparação, é possível determinar possíveis genes causadores de doenças de origem genética (por exemplo, o câncer). Nestes experimentos, grandes quantidades de dados numéricos (relacionados às medidas de níveis de expressão dos genes) são gerados e métodos estatísticos são im- portantes para análise dos dados, com objetivo de identificar os genes que apresentam evidências para níveis de expressão diferentes. O objetivo de nossa pesquisa é comparar o desempenho e desenvolver métodos estatísticos, capazes de identificar genes que apresentam evidências para níveis de expressão diferentes, quando comparamos situações de interesse (tratamentos) com uma situação de controle. Para isto, descrevemos o teste t, proposto por Baldi e Long (2001) e propomos três métodos para identificar genes com evidências para níveis de expressão diferentes. O primeiro método proposto é baseado na utilização da inferência bayesiana paramétrica e dos métodos de seleção de modelos, fator de Bayes e DIC; o segundo método é baseado na inferência bayesiana semi-paramétrica conhecida como modelo de misturas de processos Dirichlet; e o terceiro método é baseado na utilização de um modelo com mistura infinita de distribuições, que aplicado à análise da expressão gênica determina grupos de níveis de expressão gênica similares, baseados nos efeitos de tratamento.
6

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Hartmann, Marcelo 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
7

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Marcelo Hartmann 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.

Page generated in 0.1893 seconds