Spelling suggestions: "subject:"modelo como mistura dde contribuições"" "subject:"modelo como mistura dee contribuições""
1 |
Alternative regression models to Beta distribution under Bayesian approach / Modelos de regressão alternativos à distribuição Beta sob abordagem bayesianaPaz, Rosineide Fernando da 25 August 2017 (has links)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. / A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
|
2 |
Métodos estatísticos aplicados à análise da expressão gênica.Saraiva, Erlandson Ferreira 23 February 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1
DissEFS.pdf: 1135537 bytes, checksum: b92ac0d09924bd51723ad77018da04de (MD5)
Previous issue date: 2006-02-23 / Financiadora de Estudos e Projetos / The technology of the DNA-Arrays is a tool used to identify and to compare levels of expression of a great number of genes or fragments of genes, in di¤erent conditions.
With this comparison, it is possible to identify genes possibly causing illnesses of genetic origin (cancer for example). Great amounts of numerical data (related the measures of
levels of expression of the genes) are generated and statistical methods are important for analysis of this data with objective to identify the genes that present evidences for
di¤erent levels of expression. The objective of our research is to develop and to describe methods statistical, capable of identifing genes that present evidences for di¤erent levels
of expression. We describe the test t, considered for Baldi and Long (2001) and consider three others methods. The first method considered is based on the use of parametric
Bayes inference and the methods for selection of models, Bayes factor and DIC; the second method is based an semi-parametric bayesian inference, model of mixtures of
Dirichlet processes. The third method is based on the use of a model with infinite mixtures of distributions that applied the analysis of the genica expression determines groups of
similar levels of expression. / A tecnologia dos arranjos de DNA (DNA-array) é uma ferramenta utilizada para identificar e comparar níveis de expressão de um grande número de genes ou fragmentos de genes simultaneamente, em condições diferentes. Com esta comparação, é possível determinar possíveis genes causadores de doenças de origem genética (por exemplo, o câncer). Nestes experimentos, grandes quantidades de dados numéricos (relacionados às medidas de níveis de expressão dos genes) são gerados e métodos estatísticos são im- portantes para análise dos dados, com objetivo de identificar os genes que apresentam evidências para níveis de expressão diferentes. O objetivo de nossa pesquisa é comparar o desempenho e desenvolver métodos estatísticos, capazes de identificar genes que apresentam evidências para níveis de expressão diferentes, quando comparamos situações de interesse (tratamentos) com uma situação de controle. Para isto, descrevemos o teste t, proposto por Baldi e Long (2001) e propomos três métodos para identificar genes com evidências para níveis de expressão diferentes. O primeiro método proposto é baseado na utilização da inferência bayesiana paramétrica e dos métodos de seleção de modelos, fator de Bayes e DIC; o segundo método é baseado na inferência bayesiana semi-paramétrica conhecida como modelo de misturas de processos Dirichlet; e o terceiro método é baseado na utilização de um modelo com mistura infinita de distribuições, que aplicado à análise da expressão gênica determina grupos de níveis de expressão gênica similares, baseados nos efeitos de tratamento.
|
3 |
Alternative regression models to Beta distribution under Bayesian approach / Modelos de regressão alternativos à distribuição Beta sob abordagem bayesianaRosineide Fernando da Paz 25 August 2017 (has links)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. / A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
|
Page generated in 0.1354 seconds