• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 856
  • 403
  • 113
  • 89
  • 24
  • 19
  • 13
  • 10
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1886
  • 660
  • 330
  • 234
  • 220
  • 216
  • 212
  • 212
  • 208
  • 204
  • 189
  • 182
  • 169
  • 150
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inferential reasoning during the psychodiagnostic assessment : attribution, hypothesis-testing strategies, and final inferences as a function of theoretical orientation, level of experience, and temporal order

Goodin Waxman, Tina January 1991 (has links)
No description available.
12

On-line inferences.

Shank, Dolores M. 01 January 1986 (has links) (PDF)
No description available.
13

The relationships between crime rate and income inequality : evidence from China

Zhang, Wenjie, active 2013 05 December 2013 (has links)
The main purpose of this study is to determine if a Bayesian approach can better capture and provide reasonable predictions for the complex linkage between crime and income inequality. In this research, we conduct a model comparison between classical inference and Bayesian inference. The conventional studies on the relationship between crime and income inequality usually employ regression analysis to demonstrate whether these two issues are associated. However, there seems to be lack of use of Bayesian approaches in regard to this matter. Studying the panel data of China from 1993 to 2009, we found that in addition to a linear mixed effects model, a Bayesian hierarchical model with informative prior is also a good model to describe the linkage between crime rate and income inequality. The choice of models really depends on the research needs and data availability. / text
14

Monte Carlo integration in discrete undirected probabilistic models

Hamze, Firas 05 1900 (has links)
This thesis contains the author’s work in and contributions to the field of Monte Carlo sampling for undirected graphical models, a class of statistical model commonly used in machine learning, computer vision, and spatial statistics; the aim is to be able to use the methodology and resultant samples to estimate integrals of functions of the variables in the model. Over the course of the study, three different but related methods were proposed and have appeared as research papers. The thesis consists of an introductory chapter discussing the models considered, the problems involved, and a general outline of Monte Carlo methods. The three subsequent chapters contain versions of the published work. The second chapter, which has appeared in (Hamze and de Freitas 2004), is a presentation of new MCMC algorithms for computing the posterior distributions and expectations of the unknown variables in undirected graphical models with regular structure. For demonstration purposes, we focus on Markov Random Fields (MRFs). By partitioning the MRFs into non-overlapping trees, it is possible to compute the posterior distribution of a particular tree exactly by conditioning on the remaining tree. These exact solutions allow us to construct efficient blocked and Rao-Blackwellised MCMC algorithms. We show empirically that tree sampling is considerably more efficient than other partitioned sampling schemes and the naive Gibbs sampler, even in cases where loopy belief propagation fails to converge. We prove that tree sampling exhibits lower variance than the naive Gibbs sampler and other naive partitioning schemes using the theoretical measure of maximal correlation. We also construct new information theory tools for comparing different MCMC schemes and show that, under these, tree sampling is more efficient. Although the work discussed in Chapter 2 exhibited promise on the class of graphs to which it was suited, there are many cases where limiting the topology is quite a handicap. The work in Chapter 3 was an exploration in an alternative methodology for approximating functions of variables representable as undirected graphical models of arbitrary connectivity with pairwise potentials, as well as for estimating the notoriously difficult partition function of the graph. The algorithm, published in (Hamze and de Freitas 2005), fits into the framework of sequential Monte Carlo methods rather than the more widely used MCMC, and relies on constructing a sequence of intermediate distributions which get closer to the desired one. While the idea of using “tempered” proposals is known, we construct a novel sequence of target distributions where, rather than dropping a global temperature parameter, we sequentially couple individual pairs of variables that are, initially, sampled exactly from a spanning treeof the variables. We present experimental results on inference and estimation of the partition function for sparse and densely-connected graphs. The final contribution of this thesis, presented in Chapter 4 and also in (Hamze and de Freitas 2007), emerged from some empirical observations that were made while trying to optimize the sequence of edges to add to a graph so as to guide the population of samples to the high-probability regions of the model. Most important among these observations was that while several heuristic approaches, discussed in Chapter 1, certainly yielded improvements over edge sequences consisting of random choices, strategies based on forcing the particles to take large, biased random walks in the state-space resulted in a more efficient exploration, particularly at low temperatures. This motivated a new Monte Carlo approach to treating complex discrete distributions. The algorithm is motivated by the N-Fold Way, which is an ingenious event-driven MCMC sampler that avoids rejection moves at any specific state. The N-Fold Way can however get “trapped” in cycles. We surmount this problem by modifying the sampling process to result in biased state-space paths of randomly chosen length. This alteration does introduce bias, but the bias is subsequently corrected with a carefully engineered importance sampler.
15

Monte Carlo integration in discrete undirected probabilistic models

Hamze, Firas 05 1900 (has links)
This thesis contains the author’s work in and contributions to the field of Monte Carlo sampling for undirected graphical models, a class of statistical model commonly used in machine learning, computer vision, and spatial statistics; the aim is to be able to use the methodology and resultant samples to estimate integrals of functions of the variables in the model. Over the course of the study, three different but related methods were proposed and have appeared as research papers. The thesis consists of an introductory chapter discussing the models considered, the problems involved, and a general outline of Monte Carlo methods. The three subsequent chapters contain versions of the published work. The second chapter, which has appeared in (Hamze and de Freitas 2004), is a presentation of new MCMC algorithms for computing the posterior distributions and expectations of the unknown variables in undirected graphical models with regular structure. For demonstration purposes, we focus on Markov Random Fields (MRFs). By partitioning the MRFs into non-overlapping trees, it is possible to compute the posterior distribution of a particular tree exactly by conditioning on the remaining tree. These exact solutions allow us to construct efficient blocked and Rao-Blackwellised MCMC algorithms. We show empirically that tree sampling is considerably more efficient than other partitioned sampling schemes and the naive Gibbs sampler, even in cases where loopy belief propagation fails to converge. We prove that tree sampling exhibits lower variance than the naive Gibbs sampler and other naive partitioning schemes using the theoretical measure of maximal correlation. We also construct new information theory tools for comparing different MCMC schemes and show that, under these, tree sampling is more efficient. Although the work discussed in Chapter 2 exhibited promise on the class of graphs to which it was suited, there are many cases where limiting the topology is quite a handicap. The work in Chapter 3 was an exploration in an alternative methodology for approximating functions of variables representable as undirected graphical models of arbitrary connectivity with pairwise potentials, as well as for estimating the notoriously difficult partition function of the graph. The algorithm, published in (Hamze and de Freitas 2005), fits into the framework of sequential Monte Carlo methods rather than the more widely used MCMC, and relies on constructing a sequence of intermediate distributions which get closer to the desired one. While the idea of using “tempered” proposals is known, we construct a novel sequence of target distributions where, rather than dropping a global temperature parameter, we sequentially couple individual pairs of variables that are, initially, sampled exactly from a spanning treeof the variables. We present experimental results on inference and estimation of the partition function for sparse and densely-connected graphs. The final contribution of this thesis, presented in Chapter 4 and also in (Hamze and de Freitas 2007), emerged from some empirical observations that were made while trying to optimize the sequence of edges to add to a graph so as to guide the population of samples to the high-probability regions of the model. Most important among these observations was that while several heuristic approaches, discussed in Chapter 1, certainly yielded improvements over edge sequences consisting of random choices, strategies based on forcing the particles to take large, biased random walks in the state-space resulted in a more efficient exploration, particularly at low temperatures. This motivated a new Monte Carlo approach to treating complex discrete distributions. The algorithm is motivated by the N-Fold Way, which is an ingenious event-driven MCMC sampler that avoids rejection moves at any specific state. The N-Fold Way can however get “trapped” in cycles. We surmount this problem by modifying the sampling process to result in biased state-space paths of randomly chosen length. This alteration does introduce bias, but the bias is subsequently corrected with a carefully engineered importance sampler.
16

Monte Carlo integration in discrete undirected probabilistic models

Hamze, Firas 05 1900 (has links)
This thesis contains the author’s work in and contributions to the field of Monte Carlo sampling for undirected graphical models, a class of statistical model commonly used in machine learning, computer vision, and spatial statistics; the aim is to be able to use the methodology and resultant samples to estimate integrals of functions of the variables in the model. Over the course of the study, three different but related methods were proposed and have appeared as research papers. The thesis consists of an introductory chapter discussing the models considered, the problems involved, and a general outline of Monte Carlo methods. The three subsequent chapters contain versions of the published work. The second chapter, which has appeared in (Hamze and de Freitas 2004), is a presentation of new MCMC algorithms for computing the posterior distributions and expectations of the unknown variables in undirected graphical models with regular structure. For demonstration purposes, we focus on Markov Random Fields (MRFs). By partitioning the MRFs into non-overlapping trees, it is possible to compute the posterior distribution of a particular tree exactly by conditioning on the remaining tree. These exact solutions allow us to construct efficient blocked and Rao-Blackwellised MCMC algorithms. We show empirically that tree sampling is considerably more efficient than other partitioned sampling schemes and the naive Gibbs sampler, even in cases where loopy belief propagation fails to converge. We prove that tree sampling exhibits lower variance than the naive Gibbs sampler and other naive partitioning schemes using the theoretical measure of maximal correlation. We also construct new information theory tools for comparing different MCMC schemes and show that, under these, tree sampling is more efficient. Although the work discussed in Chapter 2 exhibited promise on the class of graphs to which it was suited, there are many cases where limiting the topology is quite a handicap. The work in Chapter 3 was an exploration in an alternative methodology for approximating functions of variables representable as undirected graphical models of arbitrary connectivity with pairwise potentials, as well as for estimating the notoriously difficult partition function of the graph. The algorithm, published in (Hamze and de Freitas 2005), fits into the framework of sequential Monte Carlo methods rather than the more widely used MCMC, and relies on constructing a sequence of intermediate distributions which get closer to the desired one. While the idea of using “tempered” proposals is known, we construct a novel sequence of target distributions where, rather than dropping a global temperature parameter, we sequentially couple individual pairs of variables that are, initially, sampled exactly from a spanning treeof the variables. We present experimental results on inference and estimation of the partition function for sparse and densely-connected graphs. The final contribution of this thesis, presented in Chapter 4 and also in (Hamze and de Freitas 2007), emerged from some empirical observations that were made while trying to optimize the sequence of edges to add to a graph so as to guide the population of samples to the high-probability regions of the model. Most important among these observations was that while several heuristic approaches, discussed in Chapter 1, certainly yielded improvements over edge sequences consisting of random choices, strategies based on forcing the particles to take large, biased random walks in the state-space resulted in a more efficient exploration, particularly at low temperatures. This motivated a new Monte Carlo approach to treating complex discrete distributions. The algorithm is motivated by the N-Fold Way, which is an ingenious event-driven MCMC sampler that avoids rejection moves at any specific state. The N-Fold Way can however get “trapped” in cycles. We surmount this problem by modifying the sampling process to result in biased state-space paths of randomly chosen length. This alteration does introduce bias, but the bias is subsequently corrected with a carefully engineered importance sampler. / Science, Faculty of / Computer Science, Department of / Graduate
17

Methodological problems in causal inference, with reference to transitional justice

Lee, Byung-Jae 22 September 2014 (has links)
This dissertation addresses methodological problems in causal inference in the presence of time-varying confounding, and provides methodological tools to handle the problems within the potential outcomes framework of causal inference. The time-varying confounding is common in longitudinal observational studies, in which the covariates and treatments are interacting and changing over time in response to the intermediate outcomes and changing circumstances. The existing approaches in causal inference are mostly focused on static single-shot decision-making settings, and have limitations in estimating the effects of long-term treatments on the chronic problems. In this dissertation, I attempt to conceptualize the causal inference in this situation as a sequential decision problem, using the conceptual tools developed in decision theory, dynamic treatment regimes, and machine learning. I also provide methodological tools useful for this situation, especially when the treatments are multi-level and changing over time, using inverse probability weights and $g$-estimation. Substantively, this dissertation examines transitional justice's effects on human rights and democracy in emerging democracies. Using transitional justice as an example to illustrate the proposed methods, I conceptualize the adoption of transitional justice by a new government as a sequential decision-making process, and empirically examine the comparative effectiveness of transitional justice measures --- independently or in combination with others --- on human rights and democracy. / text
18

The generation of thematic inferences during narrative text comprehension

Zhang, Hao, 張浩 January 1998 (has links)
published_or_final_version / Psychology / Doctoral / Doctor of Philosophy
19

Statistical estimation of evolutionary trees

Goldman, Nicholas January 1991 (has links)
No description available.
20

Sequences of factorial designs for industrial experimentation

Gilmour, Steven George January 1991 (has links)
No description available.

Page generated in 0.0537 seconds