• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Shape Spaces and Shape Modelling: Analysis of planar shapes in a Riemannian framework

Kähler, Maximilian 16 April 2018 (has links)
This dissertation presents some of the recent developments in the modelling of shape spaces. Forming the basis for a quantitative analysis of shapes, this is relevant for many applications involving image recognition and shape classification. All shape spaces discussed in this work arise from the general situation of a Lie group acting isometrically on some Riemannian manifold. The first chapter summarizes the most important results about this general set-up, which are well known in other branches of mathematics. A particular focus is laid on Hamiltonian methods that explore the relation of symmetry and conserved momenta. As a classical example these results are applied to Kendall’s shape space. More recent approaches of continuous shape models are then summarized and put in the same concise framework. In more detail the square root velocity shape representation, recently developed by Srivastava et al., is being discussed. In particular, the phenomenon of unclosed orbits under the action of reparametrization is addressed. This issue is partially resolved by an extended equivalence relation along with a well defined, non-degenerate, metric on the resulting quotient space.
12

On the Riemannian geometry of Seiberg-Witten moduli spaces

Becker, Christian January 2005 (has links)
<p>In this thesis, we give two constructions for Riemannian metrics on Seiberg-Witten moduli spaces. Both these constructions are naturally induced from the L2-metric on the configuration space. The construction of the so called quotient L2-metric is very similar to the one construction of an L2-metric on Yang-Mills moduli spaces as given by Groisser and Parker. To construct a Riemannian metric on the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for different perturbations. The second construction of a Riemannian metric on the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space.</p> <p>We consider the Seiberg-Witten moduli space on a simply connected K&auml;uhler surface. We show that the moduli space (when nonempty) is a complex projective space, if the perturbation does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration. On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the moduli space are Fubini-Study metrics. Correspondingly, the metrics on the total space of the Seiberg-Witten bundle are Berger metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations. Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space on a K&auml;hler surface is a K&auml;hler metric.</p> / <p>In dieser Dissertationsschrift geben wir zwei Konstruktionen Riemannscher Metriken auf Seiberg-Witten-Modulr&auml;umen an. Beide Metriken werden in nat&uuml;rlicher Weise durch die L2-Metrik des Konfiguartionsraumes induziert. Die Konstruktion der sogenannten Quotienten-L2-Metrik entspricht der durch Groisser und Parker angegebenen Konstruktion einer L2-Metrik auf Yang-Mills-Modulr&auml;umen. Zur Konstruktion einer Quotienten-Metrik auf dem Totalraum des Seiberg-Witten-B&uuml;ndels f&uuml;hren wir die sogenannte reduzierte Eichgruppe ein. Wir zeigen, dass der Quotient des Pr&auml;modulraumes nach der reduzierten Eichgruppe als U(1)-B&uuml;ndel isomorph ist zu dem Quotienten nach der basierten Eichgruppe. Dadurch tr&auml;gt der Totalraum des Seiberg-Witten B&uuml;ndels eine nat&uuml;rliche Quotienten-L2-Metrik, bzgl. derer die B&uuml;ndelprojektion eine Riemannsche Submersion ist. Wir berechnen explizite Formeln f&uuml;r die Schnittr&uuml;mmung des Modulraumes in Ausdr&uuml;cken der Green-Operatoren des zu einem Monopol geh&ouml;rigen elliptischen Komplexes. Ferner konstruieren wir eine Riemannsche Metrik auf dem Kobordismus zwischen Modulr&auml;umen zu verschiedenen St&ouml;rungen. Die zweite Konstruktion einer Riemannschen Metrik auf Seiberg-Witten-Modulr&auml;umen benutzt eine kanonische globale Eichfixierung, verm&ouml;ge derer der Totalraum des Seiberg-Witten-B&uuml;ndels als endlich-dimensionale Untermannigfaltigkeit des Konfigurationsraumes dargestellt werden kann.</p> <p>Wir betrachten speziell die Seiberg-Witten-Modulr&auml;ume auf einfach zusammenh&auml;ngenden K&auml;hler-Mannigfaltigkeiten. Wir zeigen, dass der Seiberg-Witten-Modulraum (falls nicht-leer) im irreduziblen Fall ein komplex projektiver Raum its und im reduziblen Fall aus einem einzelnen Punkt besteht. Das Seiberg-Witten-B&uuml;ndel l&auml;&szlig;t sich mit der Hopf-Faserung identifizieren. Die L2-Metrik des Modulraumes auf der komplex projektiven Fl&auml;che CP2 (mit einer speziellen Spin-C-Struktur) ist die Fubini-Study-Metrik; entsprechend sind die Metriken auf dem Totalraum Berger-Metriken. Wir zeigen, dass der Durchmesser des Modulraumes gegen 0 konvergiert, wenn die St&ouml;rung sich dem reduziblen Fall n&auml;hert. Schlie&szlig;lich zeigen wir, dass die Quotienten-L2-Metrik auf dem Seiberg-Witten-Modulraum einer K&auml;hlerfl&auml;che eine K&auml;hler-Metrik ist.</p>
13

Validated Continuation for Infinite Dimensional Problems

Lessard, Jean-Philippe 07 August 2007 (has links)
Studying the zeros of a parameter dependent operator F defined on a Hilbert space H is a fundamental problem in mathematics. When the Hilbert space is finite dimensional, continuation provides, via predictor-corrector algorithms, efficient techniques to numerically follow the zeros of F as we move the parameter. In the case of infinite dimensional Hilbert spaces, this procedure must be applied to some finite dimensional approximation which of course raises the question of validity of the output. We introduce a new technique that combines the information obtained from the predictor-corrector steps with ideas from rigorous computations and verifies that the numerically produced zero for the finite dimensional system can be used to explicitly define a set which contains a unique zero for the infinite dimensional problem F: HxR->Im(F). We use this new validated continuation to study equilibrium solutions of partial differential equations, to prove the existence of chaos in ordinary differential equations and to follow branches of periodic solutions of delay differential equations. In the context of partial differential equations, we show that the cost of validated continuation is less than twice the cost of the standard continuation method alone.
14

[pt] RUMO A UMA ABORDAGEM COMBINATÓRIA DA TOPOLOGIA DOS ESPAÇOS DE CURVAS ESFÉRICAS NÃO-DEGENERADAS / [en] TOWARDS A COMBINATORIAL APPROACH TO THE TOPOLOGY OF SPACES OF NONDEGENERATE SPHERICAL CURVES

JOSÉ VICTOR GOULART NASCIMENTO 03 November 2016 (has links)
[pt] Decompõe-se o espaço das curvas não-degeneradas sobre a n-esfera sujeitas a uma dada matriz de monodromia (munido de uma estrutura de variedade de Hilbert adequada) em uma coleção enumerável de células contráteis parametrizadas pelos itinerários admissíveis para os levantamentos a SOn+1 das referidas curvas através das células obtidas de uma estratificação de SOn+1 estreitamente relacionada com a clássica decomposição de Bruhat de GLn+1. A expressão itinerário admissível significa aqui uma sequência finita de células sujeitas a umas poucas restrições que, ademais, são naturalmente insinuadas pela geometria do problema. O principal interesse dessa nova abordagem é que essa combinatorialização funciona homogeneamente em todas as dimensões n (não obstante óbvias dificuldades computacionais), diferentemente dos métodos ad-hoc, de cunho mais geométrico, até aqui empregados para obter informações topológicas sobre esses e outros espaços de curvas relacionados (que têm sido bem sucedidos apenas em dimensões n baixas). Essa abordagem pode ser considerada como uma primeira tentativa de chegar a um método unificado para a determinação do tipo homotópico de tais espaços, e ajuda a dispensar certos argumentos de análise funcional usualmente empregados na definição da topologia correta para os referidos espaços de curvas. / [en] The space of nondegenerate curves on the n-sphere subject to a fixed monodromy matrix (provided with a suitable Hilbert manifold structure) is decomposed into a countable collection of contractible cells parameterized by the SOn+1-lifted curves admissible itineraries through cells arriving from a stratification of SOn+1 closely related to the classical Bruhat decomposition of GLn+1. The expression admissible itinerary herein stands for a finite sequence of cells subject to a few constraints that are otherwise naturally suggested by the geometry of the problem. The main interest of such a new approach is that this combinatorialization works homogeneously in any dimension n (with obvious computational difficulties), unlike the more geometry-flavoured ad-hoc methods for achieving topological information about these and related spaces of curves (which usually have had a good run only in low dimensions n). This approach can be regarded as a first attempt at a unified method for figuring out the homotopy-type of such spaces, and it helps to override some functional analysis arguments usually deployed in defining the right topology for these spaces of curves.
15

Noncommutative manifolds and Seiberg-Witten-equations / Nichtkommutative Mannigfaltigkeiten und Seiberg-Witten-Gleichungen

Alekseev, Vadim 07 September 2011 (has links)
No description available.

Page generated in 0.1058 seconds