• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Specificity and function of Th-cells in influenza A virus infection in a mouse model

Guadarrama, F. R. E. January 1989 (has links)
No description available.
2

Impact d’une infection par le virus grippal de type A sur la myélopoïèse / Impact of influenza A virus infection on myelopoiesis

Beshara, Ranin 26 October 2018 (has links)
L’infection par le virus de la grippe, ou le Myxovirus influenzae de type A (IAV), constitue l'une des causes les plus importantes de maladies des voies respiratoires dans le monde. Elle conduit également à des épidémies récurrentes avec des taux élevés de morbidité et de mortalité. Des surinfections bactériennes, principalement causées par Streptococcus pneumoniae (pneumonie), sont souvent associées à la grippe et contribuent de manière significative à l’excès de mortalité. La perturbation de l'intégrité des tissus pulmonaires et la diminution de l'immunité antibactérienne au cours de l'infection par IAV sont à l’origine de la colonisation et à la dissémination des bactéries.L'infection grippale entraîne une altération profonde du compartiment de cellules myéloïdes pulmonaires caractérisée par une altération numérique ou fonctionnelle des cellules sentinelles - les macrophages alvéolaires et les cellules dendritiques conventionnelles (cDC) - et par un recrutement de cellules myéloïdes inflammatoires -les neutrophiles, les monocytes inflammatoires ou encore les cellules dendritiques inflammatoires.Les cellules myéloïdes sont originaires de la moelle osseuse (MO). Lors d’infections, la myélopoïèse peut être profondément affectée afin de maintenir la production et la mobilisation de cellules myéloïdes inflammatoires au niveau du site d’infection. A l’heure actuelle, les conséquences de l’infection grippale sur la myélopoïèse restent encore mal connues.Dans notre projet, nous rapportons que l'infection grippale conduit à une diminution transitoire du nombre de cDC (cDC1 et cDC2) dans les poumons qui coïncide avec une chute dans la MO, du nombre de progéniteurs/précurseurs impliqués dans la génération des cDC (CDP, pre-cDC et plus particulièrement les pre-cDC1). Cette diminution de la "DCpoïèse" est associée à une accélération de la génération des monocytes, i.e. monopoïèse. La différenciation altérée des cDC est indépendante des cytokines pro-inflammatoires et n'est pas due à un dysfonctionnement intrinsèque des précurseurs de cDC. De façon intéressante, nous rapportons que ces altérations au niveau de la MO sont associées à une diminution de la production de Flt3-L ou Fms-like tyrosine kinase 3 ligand, un facteur crucial pour la différenciation des DC. La supplémentation en Flt3-L au cours de la grippe rétablit la différenciation des progéniteurs de cDC dans la MO et restaure le compartiment des cDC pulmonaires. De façon intéressante, cette restauration s’accompagne d’une protection partielle contre l’infection pneumococcique secondaire caractérisée par une réduction de la charge bactérienne, une amélioration de la pathologie pulmonaire et une survie prolongée. / Influenza type A virus (IAV) infection, is one of the most important causes of respiratory diseases worldwide. It also leads to recurrent epidemics with high rates of morbidity and mortality. Secondary bacterial infections, mainly caused by Streptococcus pneumoniae (pneumonia), are often associated with influenza and contribute significantly to excess mortality. Disruption of lung tissue integrity and impaired antibacterial immunity during IAV infection participate in bacterial pulmonary colonization and dissemination out of the lungs.Influenza infection leads to a profound alteration in the pulmonary myeloid cell compartment characterized by numeric or functional alteration of sentinel cells (alveolar macrophages and conventional dendritic cells (cDC)) and recruitment of inflammatory myeloid cells (neutrophils, inflammatory monocytes and inflammatory dendritic cells).Myeloid cells originate from the bone marrow (BM). During infections, myelopoiesis may be profoundly affected in order to maintain the production and mobilization of inflammatory myeloid cells to the site of infection. At present, the consequences of influenza infection on myelopoiesis remain poorly understood.In our project, we report that influenza infection leads to a transient decrease in the number of Cdc (cDC1 and cDC2) in the lungs, and severely impairs the number of BM progenitors committed to the DC lineage (CDP, pre-cDC and, most importantly, the cDC1-biased pre-DC lineage). This reduction was associated with an increase in the production of monocytes in the BM (monopoiesis). The altered cDC differentiation was independent of pro-inflammatory cytokines and was not due to an intrinsic dysfunction of cDC precursors. Defective DC genesis during influenza was associated with a decrease in the production of the key cDC differentiation factor, Fms-like tyrosine kinase 3 ligand (Flt3-L). Importantly, Flt3-L overexpression during influenza restores the differentiation of BM progenitors into cDC - a phenomenon associated with repopulation of cDC in the lungs. The restoration of pulmonary cDC associates with a partial protection against secondary pneumococcal infection characterized by reduced bacterial loads, improved pathological outcomes and prolonged survival.
3

Late Antigen Regulates the Differentiation of Cytotoxic CD4 T Cells in Influenza Infection

Vong, Allen M. 15 December 2017 (has links)
CD4 T cells differentiate into multiple effector subsets that mediate pathogen clearance. ThCTL are anti-viral effectors with MHC-II restricted cytotoxicity. The factors regulating ThCTL generation are unclear, in part due to a lack of a signature marker. I show here that in mice, NKG2C/E identifies ThCTL that develop in the lung during influenza A virus (IAV) infection. ThCTL phenotype indicates they are highly activated effectors with high levels of binding to P-selectin, T-bet, IFNγ production, and degranulation. ThCTL express increased levels of granzymes and perforin and lower levels of genes associated with memory and recirculation compared to non-ThCTL lung effectors. ThCTL are also restricted to the site of infection, the lung in IAV and systemically in LCMV. ThCTL require Blimp-1 for their differentiation, suggesting a unique effector CD4 population. As ThCTL are highly activated, they also require antigen signaling post priming during IAV infection. Late antigen was necessary and sufficient for the differentiation of ThCTL. In the context of late antigen encounter, ThCTL surprisingly do not require CD80 and CD86 costimulation for their differentiation. Additionally ThCTL do not require late IL-2 for their differentiation and instead require late IL-15 signals for their efficient generation. Thus these data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.
4

The role of autophagy in CD8plus T cell immunity

Puleston, Daniel January 2015 (has links)
No description available.
5

Rôle du tissu adipeux dans les infections respiratoires par le virus Influenza ou la bactérie streptococcus pneumoniae / Role of adipose tissue in respiratory infections with Influenza virus or bacteria streptococcus pneumoniae

Ayari, Asma 28 June 2018 (has links)
Longtemps décrit comme un simple tissu de réserve énergétique, le tissu adipeux blanc est, depuis l’identification de la leptine en 1994, considéré comme un véritable organe endocrine. En effet, ce tissu secrète de nombreuses hormones et cytokines agissant de manière paracrine et endocrine pour contrôler le métabolisme énergétique. Par ailleurs, en plus des préadipocytes et des adipocytes, le tissu adipeux blanc contient également des cellules immunes innées et adaptatives ; lui conférant ainsi un rôle important dans le développement et le contrôle de l’immunité. Cependant, le rôle joué par le tissu adipeux blanc dans les infections - notamment pulmonaires - reste encore peu étudié. C’est dans ce cadre général que s’est inscrit ce travail de Thèse. La susceptibilité accrue des individus obèses (expansion du tissu adipeux blanc) à l’infection par le virus de la grippe (influenza) est largement étayée dans la littérature. Nous avons évalué l’impact de l’infection par le virus influenza sur le tissu adipeux blanc, chez des souris minces et des souris obèses. Nos résultats montrent que, de manière inattendue, le virus est détecté dans les tissus adipeux, sous-cutané (inguinal) et viscéral (périgonadique), de souris infectées par voie intra-nasale (détection du génome viral par RT-qPCR). La présence de virus dans le tissu adipeux est associée à l’augmentation de la sécrétion de cytokines pro- et anti-inflammatoires, à la diminution de l’expression de gènes impliqués dans la lipolyse et la lipogénèse, et à l’augmentation de l’expression des gènes impliqués dans l’induction d’une réponse immune anti-virale. De manière intéressante, l’infection par le virus influenza est associée au brunissement du tissu adipeux sous-cutané chez les souris minces. Chez les souris obèses, l’infection par le virus de la grippe n’induit pas l’effet dépôt spécifique observé chez la souris mince et ne montre pas de brûnissement au niveau du tissu adipeux sous-cutané 7 jours p.i. In vitro, nous montrons que le virus influenza peut infecter les préadipocytes et les adipocytes (lignée murine et cellules primaires humaines). Cependant, alors que le virus effectue la totalité de son cycle dans l’adipocyte, le préadipocyte libère très peu, voire pas, de nouveaux virions infectieux (PCR, transcriptomique, technique de plages de lyse, microscopie confocale et électronique). Ainsi nos résultats, très originaux, identifient le tissu adipeux blanc comme un nouveau tissu cible de l’infection par le virus de la grippe, in vivo. Au sein de ce tissu, les préadipocytes et les adipocytes sont potentiellement infectés par le virus, comme le montrent nos données in vitro, les adipocytes seuls permettant la production de nouvelles particules infectieuses.Contrairement à l’infection grippale, les données épidémiologiques et/ou expérimentales concernant la susceptibilité des obèses à l’infection par la bactérie Streptococcus pneumoniae sont contradictoires, du fait de l’utilisation de différents modèles d’obésité d’origine génétique et de sérotypes de pneumocoques. Dans ce projet, nous avons utilisé un modèle d’obésité d’origine nutritionnelle ; le modèle de souris nourries par un régime enrichi en lipides. Nous montrons que les souris obèses infectées (sérotype Sp1) développent un syndrome de type méningite, mortel, tandis que les souris minces contrôlent l’infection. Si les réponses pulmonaires à l’infection sont comparables entre les souris minces et obèses (dénombrement des colonies bactériennes, histologie, PCR, ELISA, cytométrie en flux), le nombre de bactéries dans le cerveau est significativement plus élevé chez les souris obèses, associé à une altération de la perméabilité de la barrière hématoencéphalique [...] / Since the identification of leptin in 1994, the white adipose tissue (WAT) is no longer considered to solely be an inert tissue storing fat. As an endocrine organ, the adipose tissue synthesizes and secretes several hormones and cytokines involved in the control of whole-body metabolism. In addition, besides preadipocytes and adipocytes, WAT also contains innate and adaptive immune cells; thereby contributing to the development and control of immunity. However, the role played by the adipose tissue during infections - notably during pulmonary infections, such as those resulting from influenza virus or Streptococcus pneumoniae infections - has barely been investigated. This defines the general scope of this work. Epidemiological and experimental data convincingly report that obese individuals are more susceptible to influenza infection. During this project, we therefore questioned whether influenza infection may impact on adipose tissues, both subcutaneous (inguinal, SCAT) and visceral (perigonadal, EWAT) depots, in lean and high-fat diet-induced obese mice. We unexpectedly showed that influenza virus is detected in SCAT and EWAT (quantification of the viral genome by RtqPCR) and that this was associated with drastic changes in the tissue such as: increased secretion of pro- and anti-inflammatory cytokines, decreased expression of genes involved in lipogenesis and lipolysis, as well as increased expression of genes related to the induction of anti-viral immunity. Interestingly enough, influenza infection was associated with the development of brown-like adipocytes in the SCAT, only in lean animals. Moreover, we demonstrated in vitro that preadipocytes and adipocytes (murine cell-line and human primary cells) are permissive to infection, yet with different outcomes. Indeed, only adipocytes allowed the release of new infectious particles (RtqPCR, transcriptomics, quantification of infectious particules on MDCK cells, confocal and transmission electron microscopy). Altogether, our findings revealed, for the first time, that the white adipose tissue, an organ at the crossroads of metabolism and immunity, is deeply affected by influenza infection and might thus be undervalued in influenza pathophysiology.In opposite to influenza infection, the impact of obesity on the outcome of Streptococcus pneumoniae (S.p.) infection remains uncertain, due to the different models (genetically-based obesity, and bacterial strains) used. During this work, we investigated S. pneumoniae (Sp1 strain, sublethal dose) infection in lean and high-fat diet-induced obese mice. We showed that obese mice died from sublethal S. pneumoniae infection, compared to lean animals. The increased mortality induced by infection did not result from impaired pulmonary response but rather from the development of a meningitis-like syndrom likely resulting from an increased bacterial dissemination through the bloodbrain barrier into the brain. We propose that the model of dietary obesity induced by consumption of fat-enriched diet, may be envisaged as a novel and valuable experimental model of memingitis to study Streptococcus pneumoniae travel through the blood-brain barrier and the subsequent immune consequences.
6

Design of Influenza Immunogens by Hemagglutinin (HA) Protein Minimization

Mallajosyula, V Vamsee Aditya January 2014 (has links) (PDF)
Influenza virus is a pleiomorphic human pathogen which causes self-limiting respiratory illness lasting one-two weeks in most individuals. However, in immunologically compromised individuals, influenza infection may lead to severe morbidity and fatality. Annual epidemics cause 250,000-500,000 deaths worldwide and remain a major public health threat. The virus has evolved mechanisms of antigenic ‘drift’ and ‘shift’ to evade the host immune response. Hence, current influenza vaccines need to be updated every few years. Moreover, the currently available inactivated/live attenuated vaccines entail virus culture in embryonated chicken eggs hindering rapid scale-up. The aforementioned limitations of the current vaccines has had debilitating effect when strain mismatch between vaccine formulation and influenza viruses circulating within the population has occurred in the past, despite intensive monitoring. Public health is further compromised when an unpredictable mixing event among influenza virus genomes leads to antigenic shift, facilitating a potential pandemic outbreak. These concerns have expedited efforts towards developing a ‘universal’ flu vaccine. Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. The precursor polypeptide, HA0, is assembled into a trimer along the secretory pathway and transported to the cell surface. Cleavage of HA0 generates the mature, disulfide linked HA1 and HA2 subunits. Mature HA has a globular head domain which mediates receptor binding and is primarily composed of the HA1 subunit while the stem domain predominantly comprises of the HA2 subunit. The HA stem is trapped in a metastable state and undergoes an extensive low-pH induced conformational rearrangement in the host-cell endosomes to adopt the virus-host membrane fusion competent state. The ‘antigenic sites’ on the immunodominant globular head of HA are subjected to heightened immune pressure resulting in escape variants, thereby limiting the breadth of head-directed neutralizing antibodies (nAbs). As opposed to the highly-variable head domain, the HA stem is conserved and targeted by several broadly neutralizing antibodies (bnAbs) with neutralizing activity against diverse influenza A virus subtypes. Although several bnAbs bind to the conserved HA stem, focusing the immune response to this conserved, subdominant stem domain in presence of the variable head domain of HA has been challenging. Alternatively, mimicking the epitope of these stem-directed bnAbs in the native, pre-fusion conformation in a ‘headless’ stem immunogen capable of eliciting a broadly protective immune response has been difficult because of the metastable conformation of HA. Addressing the aforementioned challenges, we describe the design and characterization of novel influenza immunogens by HA protein minimization. Chapter 1 gives an overview of the influenza virus life cycle, and outlines the structural organization and function of viral proteins. The conventional vaccines that are currently used and their limitations are described in this chapter. Recent improvements in influenza vaccine production focusing on recombinant HA as an alternate solution are discussed. Painstaking efforts of several groups in the recent past has led to the isolation of bnAbs that recognize novel ‘antigenic signatures’ within the globular head and the HA stem domains. Attempts to focus the immune response to these ‘cross-protective’ epitopes are described. The design and characterization of trimeric HA stem-fragment immunogens from influenza A Group-1 viruses which mimic the native, pre-fusion conformation of HA are described in Chapter 2. We engineered ‘headless’ HA stem immunogens based on influenza A/Puerto Rico/8/34 (H1N1) subtype. H1HA10-Foldon, a trimeric derivative of our parent construct (H1HA10), bound conformation sensitive stem-directed bnAbs such as CR6261, F10 and FI6v3 with high affinity (equilibrium dissociation constant [KD] of 10-50nM). The designed immunogens elicited broadly cross-reactive antiviral antibodies which neutralized highly drifted influenza virus strains belonging to both Group-1 (H1, H5 subtypes) and 2 (H3 subtype) in vitro. Significantly, stem immunogens designed from unmatched, highly drifted influenza strains conferred protection against a lethal (2LD90) heterologous A/Puerto Rico/8/34 virus challenge in mice. Our immunogens conferred robust subtype-specific and modest heterosubtypic protection in vivo. In contrast to previous HA stem domain immunogens, the designed immunogens described here were purified from the soluble fraction in E.coli. These HA stem-fragment immunogens do not aggregate even at high concentrations and are cysteine-free which eliminates the complications arising from incorrect disulfide-linked, misfolded conformations. The aforementioned properties of the HA stem-fragment immunogens make it amenable for scalability at short notice which is vital during pandemic outbreaks. The detailed mechanism(s) by which our ‘headless’ stem immunogens provide protection need further investigation. The long central α-helices (LAH) located in the HA stem assemble together into a parallel, trimeric coiled-coil. Immunization with the wt-LAH (76-130 of HA2) derived synthetic peptide designed from an H3 subtype (H3N2 A/Hong Kong/1/68) and conjugated to keyhole limpet hemocyanin (KLH) was shown previously to elicit antibodies reactive in ELISA with multiple hemagglutinin subtypes and to confer protection against challenge with H3N2, H1N1 and H5N1 virus strains. The LAH peptide sequence was chosen based on maximal binding to the monoclonal antibody (MAb), 12D1, which has broad neutralizing activity against influenza viruses of the H3 subtype. These results motivated us to rationally design stabilized derivatives of wt-LAH and test their protective capacity in a mouse challenge model of influenza. This work is described in Chapter 3. Additionally, to understand the contribution towards protection conferred by the two distinct surface exposed patches on LAH, we designed constructs spanning different stretches of LAH. The biophysical characterization of the LAH-derived constructs indicates that most of them were well-folded. All these constructs were moderately immunogenic in mice but at best, conferred limited protection from lethal viral challenge. In contrast to previously reported results, our data suggests that the LAH in the absence of other regions of HA may require not only strong, but also specific adjuvantation to induce a robust and functional immune response in vivo. Chapter 4 describes an immunogen design (H1pHA9) based on the globular head domain of pandemic H1N1 HA which can be produced using a prokaryotic expression system. The HA-fragment, H1pHA9, stably refolds to mimic the conformation sensitive neutralizing epitopes in the globular head domain of HA. We have also successfully engineered the HA head domain to delineate the epitope of antibodies neutralizing the pandemic H1N1 virus using a yeast cell-surface display platform. In this direction, we report the isolation of a novel, neutralizing murine MAb, MA2077, against the pandemic H1N1 virus. The epitope of this MAb has been mapped onto the ‘Sa’ antigenic site. The ability of the head domain fragment, H1pHA9, which binds MA2077 with high affinity to elicit such neutralizing antibodies in vivo needs to be further explored. Structural analysis has shown that elements of the HA stem diverge between the two phylogenetic groups. Therefore, to mitigate the threat of circulating influenza A viruses from these distinct structural classes (H1 and H3 belonging to Groups 1 and 2 respectively), in lieu of a ‘universal’ vaccine, a combination of immunogens derived from both the groups is a practical alternative. In Chapter 5 we describe the design of stem-fragment immunogens from an influenza A Group-2 virus strain. We report the characterization of engineered ‘headless’ HA stem immunogens based on influenza A/Hong Kong/1/68 (H3N2) subtype. The designed immunogens were expressed in E.coli and purified from the soluble fraction with abundant yields (~15mg/lt). The HA stem-fragment immunogens could be concentrated to high concentrations without aggregation. While, H3HA10-IZ and H3HA10-Foldon, the trimeric derivatives of our parent construct (H3HA10) which were folded, conferred modest protection against a lethal homologous virus challenge in mice, there is considerable scope to improve our immunogen design. Analyzing the results from our previous work (Chapter 2), we speculate that structural elements at the N-terminus of A-helix are critical for helix initiation. We therefore extended the design to include residues from the start of the A-helix. We designed the extended stem immunogens from both H3 and H7 subtypes. The proteins were purified from the soluble fraction of the E.coli cell culture lysate. Preliminary studies suggest that extension of the A-helix has aided proper folding. These proteins need to be further characterized and evaluated in an animal model.

Page generated in 0.0976 seconds