Spelling suggestions: "subject:"1inhibition kinetics"" "subject:"binhibition kinetics""
1 |
Inhibition Kinetics of Hydrogenation of Phenanthrene / Inhiberingskinetik för hydrering av fenantrenJohansson, Johannes January 2019 (has links)
In this thesis work the hydrogenation kinetics of phenanthrene inhibited by the basic nitrogen compound acridine and the non-basic carbazole was investigated. Based on a transient reactor model a steady state plug flow model was developed and kinetic parameters were estimated through nonlinear regression to experimental data. The experimental data was previously collected from hydrotreating of phenanthrene in a bench-scale reactor packed with a commercial NiMo catalyst mixed with SiC. As a first two-step solution, the yields of the hydrogenation products of phenanthrene were predicted as a function of conversion, which subsequently was used to calculate concentration profiles as a function of position in reactor. As a second improved solution, the concentration profiles were calculated directly as a function of residence time, and these results were then used for further analysis. Reaction network 2 in figure 7 was considered sufficient to describe the product distribution of phenanthrene, with a pseudo-first-order rate law for the nitrogen compounds. Both solution methods provided similar results which gave good predictions of the experimental data, with a few exceptions. These cases could be improved by gathering more experimental data or by investigating the effect of some model assumptions. The two-step method thus proved useful in evaluating the phenanthrene reaction network and providing an initial estimate of the parameters, while the onestep method then could give a more precise solution by calculating all parameters simultaneously. As expected, acridine was shown to be more inhibiting than carbazole, both in the produced concentration profiles and estimated parameters. A possible saturation effect was also seen in the inhibition behavior, where adding more nitrogen compounds only had a small additional effect on the phenanthrene conversion. The Mears and Weisz-Prater criteria were found to be inversely proportional to the concentrations of the nitrogen compounds and otherwise only depend on rate constants, with values well below limits for diffusion controlled processes. Sensitivity analyses also supported that the global minimum had been found in the nonlinear regression solution.
|
2 |
Reator de leito fluidificado em escala aumentada para tratamento de água residuária de lavanderia comercial em co-digestão com esgoto doméstico: otimização das condições operacionais e caracterização taxonômica e funcional dos microrganismos do biofilme / Fluidized bed reactor upscale for treatment of commercial laundry wastewater combined with domestic sewage: optimization of operational conditions and taxonomic and functional characterization of microorganisms in biofilmMacedo, Thais Zaninetti 25 January 2019 (has links)
O Alquilbenzeno Linear Sulfonado (LAS) é um surfactante aniônico de degradação complexa. Via ensaio cinético em batelada ajustou-se modelo de inibição por excesso de substrato na remoção de LAS e matéria orgânica de água residuária de lavanderia comercial (ARLC) em co-digestão com esgoto doméstico (ED). A adição de 50 mg L-1 de etanol (EOH) resultou em maiores valores para velocidade específica de utilização do substrato (robs) e concentração mais elevada de LAS que fornece o maior robs (18,98 mg LAS L-1 e 2,39 mg LAS L-1 na presença e ausência de etanol, respectivamente). Areia com 1,0 mm de diâmetro foi escolhida como material suporte). Objetivou-se otimizar a remoção do surfactante de ARLC + ED (1:3 volume; ∼ 20 mg LAS L -1) em RLF em escala aumentada (19,8L) através de: (i) adição de etanol em diferentes dosagens; (ii) variação da velocidade ascensional (vasc) aplicada ao leito; e (iii) aumento do tempo de detenção hidráulica (TDH). Desta forma, para TDH de 18 h foram realizadas as seguintes fases operacionais: (I) ARLC + ED + 1,3 velocidade mínima de fluidificação (vmf); (II) ARLC + ED + 50 mg EOH L -1 + 1,3 vmf; (III) ARLC + ED+200 mg EOH L-1 + 1,3 vmf; (IV) ARLC + ED +200 mg L-1 + 1,0 vmf; (V) ARLC + ED + 200 mg L-1 + 0,7 vmf; (VI) ARLC + ED + 100 mg L-1 + 1,0 vmf; e para TDH de 30 h: (VII) ARLC + ED + 1,0 vmf. Não se observou diferença significativa na eficiência de remoção de DQO e LAS (∼ 50%; p < 0,5) nas fases I à IV. O decréscimo da vasc (0,7 vmf) resultou em 29% de eficiência de remoção de LAS (V) e o aumento do TDH em 86% de eficiência de remoção de LAS (VII). Nas fases VI e VII observou-se maior remoção de DQO (≥ 70%). As menores vasc e 200 mg EOH L-1 favoreceram acúmulo de ácidos no sistema (IV e V). No efluente do RLF foram identificados 17 compostos recalcitrantes. Para vasc = 0,7 vmf, foi observada maior diversidade de compostos recalcitrantes, em sua maioria, ftalatos. Caracterização taxonômica e funcional dos microrganismos para as fases III, IV e V (variação da vasc) e VII (maior eficiência de remoção de LAS e DQO) foi realizada por metagenômica. Foram identificados microrganismos dos domínios Archaea e Bacteria, sendo que a diminuição da vasc resultou em maior abundância relativa de arqueias metanogênicas, como Methanosarcina e genes relacionados a F420 reducing hydrogenase que é transportadora central de elétrons na metanogênese. Diversidade de gêneros foram identificados do domínio Bacteria (Geobacter, Thauera, Pseudomonas, Chryseobacterium, Sulfuricurvum e Sulfurospirillum, etc.) e genes codificadores de enzimas que atuam nas diferentes etapas de degradação do LAS: (a) adição de fumarato (fumarate redutase); (b) beta-oxidação (3-hidroxiacil-CoA desidrogenase); (c) clivagem do anel benzênico (benzoyl-CoA reductase); (d) dessulfonação (Adenylyl-sulfate reductase). Na amostra da fase VII, foram identificados genes relacionados à etapa de dessulfonação com maior abundância relativa, se comparada às demais fases. Para maior vasc observou-se maior abundância relativa de genes relacionados à fosforilação oxidativa com Chryseobacterium como principal representante. / The linear alkylbenzene sulfonate (LAS) is in the laundry detergent composition and it presents complex degradation. Through kinetics assays in batch tests, an inhibition kinetic model by subtrate excess was adjusted to the data in the removal of LAS and organic matter from laundry wastewater (LW) in co-digestion with domestic sewage (DS). The addition of 50 mg L-1 of ethanol (EOH) to the influent resulted in higher values for the specific substrate rate (robs) as well as higher LAS concentration that provided the maximum LAS utilization rate by the biomass (Sbm) (18.98 mg LAS L-1 and 2. 39 mg LAS L-1 in the presence and absence of ethanol, respectively). Sand with 1.0 mm of diameter was chosen as supporting material for the fluidized bed reactor (FBR). The purpose of the present study was to optimize the removal of surfactant in LW + DS (1: 3 volume; ∼ 20 mg LAS L-1) by using an upscale FBR (19.8 L) through: (i) adding ethanol in different dosages; (ii) varying the upflow velocity (vup) applied to bed; and (iii) increasing the hydraulic retention time (HRT). Thus, for 18h of HRT, the following stages were performed: (I) LW + DS + 1,3 fluidization minimum velocity (vfm); (II) LW + DS + 50 mg EOH L-1 + 1.3 vfm; (III) LW + DS + 200 mg EOH L-1 + 1.3 vfm; (IV) LW + DS + 200 mg L-1 + 1.0 vfm; (V) LW + DS + 200 mg L-1 + 0.7 vfm; (VI) LW + DW + 100 mg L-1 + 1.0 vfm; and for 30 h of HRT: (VII) LW + DS + 1.0 vfm. There was no significant difference in the efficiency of COD and LAS removal (∼ 50%, p < 0.5) in stages I to IV. The vup decrease (0.7 vfm) resulted in LAS removal efficiency of 29% (V) and the HRT increase resulted in LAS removal efficiency of 86% (VII). In stages VI and VII, COD removal ≥ 70% was observed. Lower vup as well as ethanol dosage of 200 mg L-1 favored system acidification (IV and V). In the FBR effluent, 17 recalcitrant compounds were identified. For vup = 0.7 vfm, large diversity of recalcitrant compounds, mostly phthalates, was observed. A taxonomic and functional characterization of the microorganisms was performed by metagenomics analysis in stages III, IV and V (vup variation) and VII (higher efficiency of LAS and COD removal). Microorganisms of Archaea and Bacteria domains were identified, and the decrease of vup resulted in a higher relative abundance of methanogenic archaea, mainly Methanosarcina. Genes related to F420, which are the central electron carrier in the methanogenesis, were identified. Genera diversity was classified in Bacteria domain (Geobacter, Thauera, Pseudomonas, Pseudomonas, Chryseobacterium, Sulfuricurvum and Sulfurospirillum, etc.). Enzyme-encoding genes that act on different stages of LAS degradation were found: (a) addition of fumarate (fumarate reductase); (b) beta-oxidation (3-hydroxyacyl-CoA dehydrogenase); (c) benzene ring cleavage (benzoyl-CoA reductase) and (d) desulfonation (Adenylyl-sulfate reductase). In stage VII sample, genes related to the desulfonation step were identified with higher relative abundance, when compared to the other stages. For a higher vup, a higher relative abundance of genes related to oxidative phosphorylationwas observed and the genus main representative in that category was Chryseobacterium.
|
3 |
Identification of Food-Derived Peptide Inhibitors of Soluble Epoxide HydrolaseObeme-Nmom, Joy 07 November 2023 (has links)
Over the course of more than ten years, there has been a significant increase in the approach employed to inhibit the function of soluble epoxide hydrolase (sEH). The phenomenon of upregulating soluble epoxide hydrolase (sEH) has been found to result in a decrease in the ratio of epoxyeicosatrienoic acids (EETs) to dihydroeicosatrienoic acids (DHETs) in the body. This has garnered significant attention due to the diverse biological functions attributed to EETs, including the regulation of vasodilation, neuroprotection, increased fibrinolysis, calcium ion influx, and anti-inflammatory effects. Consequently, there has been a growing interest in developing and discovering sEH inhibitors through chemical syntheses and natural extracts, with the aim of increasing the availability of these anti-inflammatory molecules by reducing their hydrolysis. A comprehensive examination of this project was conducted to explore the inhibitory effects of YMSV, a tetrapeptide derived from the castor bean (Ricinus communis), on sEH, as well as to elucidate its underlying mechanism of action. YMSV was determined to function as a mixed-competitive inhibitor of soluble epoxide hydrolase (sEH), and the interaction between the peptide and the protein resulted in the disruption of the secondary structural composition of sEH. Furthermore, the hydrogen bond interactions between YMSV and the Asp 333 residue in the active region of soluble epoxide hydrolase (sEH) were demonstrated using molecular docking investigations. However, quantitative structure-activity relationship (QSAR) research revealed that nonpolar, hydrophobic, and bulky amino acids are favored at the N- and C- terminals of peptides for sEH inhibition. The results of this study indicate that peptides obtained from dietary sources possess unique characteristics as inhibitors of soluble epoxide hydrolase (sEH), displaying significant potency. Consequently, these peptides have promise for further development as therapeutic medicines targeting inflammation and depression in the future.
|
Page generated in 0.0969 seconds