• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 611
  • 257
  • 120
  • 83
  • 62
  • 40
  • 28
  • 19
  • 12
  • 9
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 1472
  • 187
  • 161
  • 152
  • 143
  • 133
  • 128
  • 120
  • 118
  • 113
  • 112
  • 110
  • 105
  • 85
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A BIVALENT METHODOLOGY FOR TARGETING PROTEIN KINASES: CONJUGATING PHAGE DISPLAY SELECTED CYCLIC PEPTIDES TO STAUROSPORINE

Shomin, Carolyn January 2011 (has links)
Protein kinases constitute essential biological and target class owing to the vital function of reversible phosphorylation catalyzed by these enzymes. With more than 500 kinases in the human genome, containing conserved structure and overlapping function, pose challenging targets for inhibition. Alternative methods for targeting protein kinases remain warranted as the traditional methods are biased toward ATP-competitive compounds. These methods have yielded successful therapeutics, however toxicity due to nonselectivity and limited development potential due to intense drug discovery efforts renders alternative modes of action attractive as new goals for protein kinase inhibition.Herein is presented a bivalent methodology for targeting protein kinases comprising staurosporine tethered a phage display cyclic peptide library such that the cyclic peptide is directed to areas on the kinase surface distinct from the ATP-site where staurosporine is bound. Presented in detail is this strategy as it was successfully applied to Protein Kinase A and the subsequent analysis of bivalent ligands. Since this initial study several kinases have been targeted with this methodology and Application to Aurora Kinase A will be explored in detail. An essential analysis of results to date is included as it applies to the redesign, construction, and application of new cyclic phage libraries. Finally, to complete the first successful application against Protein Kinase A, we explore kinase expression for structural studies.
72

Investigations into the secretory pathway of mammary epithelial cells

Duncan, Jennifer Sarah January 1998 (has links)
No description available.
73

Endogenous ouabain-like immunoreactive substance (OLIS) : characterisation and physiological studies

Semra, Yemane Kurban January 2000 (has links)
No description available.
74

An investigation of the role of p38 MAP kinase and p13-kinase/PKB pathways in IL-2-induced lymphocyte proliferation

Lali, Ferdinand Vuciri January 2000 (has links)
No description available.
75

Inhibitors of serine proteinases

Kraunsoe, James A. E. January 1995 (has links)
No description available.
76

Meta-Analysis: Hydroxymethylglutaryl Coenzyme A Reductase Inhibitors in Thoracic Transplant Patients

Moon, Rebecca January 2006 (has links)
Class of 2006 Abstract / Objectives: To evaluate the efficacy of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, in reducing all-cause mortality and death due to rejection when administered to thoracic organ transplant patients. Methods: Using the following Medical Subject Heading (MeSH) terms and text words: hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, statins, heart transplantation, and lung transplantation, the following data bases were searched: Cochrane Central Register of Controlled Trials (First Quarter 2006), Cochrane Database of Systematic Reviews (First Quarter 2006), Database of Abstracts and Reviews of Effects (First Quarter 2006), ACP Journal Club (1991to January/February 2006), International Pharmaceutical Abstracts (1970-February 2006), and Medline (1966 to February 2006) for English language reports. Three prospective randomized controlled trials (RCTs) and 3 retrospective observational studies were identified as using statins to reduce mortality and death due to fatal rejection in thoracic organ transplant patients. Results: Using all 6 studies (n= 1770 patients), statins decreased mortality by 77% (OR=0.23; [95% confidence interval 0.16-0.34] Z test, P<0.001). Sub-analysis using only RCT heart transplant data showed that statins decreased mortality by 69% (OR=0.31; [95% confidence interval 0.09-1.07] Z test, P<0.003). Sub-analysis using retrospective heart transplant data showed that statins decreased mortality by 75% (OR=0.25; [95% confidence interval 0.16-0.39] Z test, P<0.001). Retrospective lung transplant results (1 study) showed statins decreased mortality by 90% (OR=0.10; [95% confidence interval 0.03-0.34] Z test, P<0.001). Statins also significantly reduced death due to rejection (OR=0.22; [95% confidence interval 0.13-0.37]). Using all 6 studies (n= 1770 patients), statins decreased death due to rejection by 78%. Conclusions: In patients undergoing thoracic organ transplantation, statins significantly decrease all-cause mortality and death due to rejection. Therefore, statins should be routinely administered to these patients following transplant surgery.
77

Study into the biosynthesis of nonribosomal peptides using nonhydrolyzable coenzyme A analogs

Liu, Ye January 2009 (has links)
Thesis advisor: Steven D. Bruner / Thesis advisor: Larry W. McLaughlin / Nonribosomal peptides are therapeutically important natural products produced through pathways that utilize large multimodular enzymes, termed nonribosomal peptide synthetases (NRPSs). Central to the assembly line methodology, the monomer building blocks and the growing polymer chain are covalently linked to dedicated peptidyl carrier protein domains as phosphopantetheinyl thioesters. Although structures of multidomain NRPS fragments have been solved recently, the active conformation of the carrier domains with their attached phosphopantetheinyl arms has not been determined. Significant conformational changes in carrier domains are likely to occur as the domains shuttle peptidyl phosphopantetheinyl thioesters between the active sites of the partner domains. This thesis focuses on the application of the synthetic isosteric non-hydrolyzable CoA analogs to manipulate carrier domain geometry of NRPS assemblies through. The synthetic conjugates are designed to deliver an inhibitor moiety to a domain of interest. Using this strategy, various complexes have been designed to direct the phosphopantetheinyl arm to active sites of adenylation domains and thioesterase domains in catalytically relevant conformations. The structurally restrained multidomain NRPS assemblies are useful for elucidating the complex structure and mechanism of NRPSs. An X-ray crystal structure of a peptidyl carrier-thioesterase NRPS didomain fragment from enterobactin synthetase has been solved with a phosphopantetheinyl analog which forms a cross-link between the two domains. This structure provides, for the first time, detailed insights into the phosphopantetheinyl arm interaction with an NRPS partner domain, as well as an active confirmation of a mutidomain NRPS in the holo-form. In addition, the hydrolytically stable CoA analogs have been successfully used as probes in the structural and mechanistic study of a CoA-utilizing enzyme DpgC, a unique cofactor-independent dioxygenase involved in vancomycin biosynthesis. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
78

Use of S. pombe to Characterize Mammalian Adenylyl Cyclases and Their Inhibitors

Gottlieb, Rachel January 2015 (has links)
Thesis advisor: Charles Hoffman / The study of mammalian cAMP signaling has often been confounded by the fact that ten different genes encode adenylyl cyclases (ACs) that produce cAMP from ATP and 16 different genes encode phosphodiesterases (PDEs) that hydrolyze cAMP to AMP. In this study, mammalian AC cDNAs were cloned and integrated into strains of the fission yeast Schizosaccharomyces pombe that lack their endogenous AC to determine the basal activity of all ten AC isoforms. In addition, response to the stimulatory mammalian Gsα was determined by co-expression of a mutationally-activated form of the human GNAS1 gene. AC activity was assessed using an fbp1-GFP reporter that is repressed by cAMP production and PKA activity. Results confirm that all ten isoforms have detectable basal activity, and AC1-9 definitively respond to Gsα stimulation. When matched with a sufficiently potent mammalian phosphodiesterase (PDE), strains expressing mammalian ACs make good candidates for small molecule high throughput screening (HTS) to detect AC inhibitors. A 100,000 compound screen was recently performed to detect AC and Gsα inhibitors as well as PDE activators. A promising “hit” was progesterone, which has been previously suggested to inhibit ACs in Xenopus. Initial results suggest that progesterone inhibits AC1 and the closely-related AC3. These data demonstrate the utility of using S. pombe as an effective platform for identifying inhibitors of both basal and GNAS1-stimulated AC activity. / Thesis (BS) — Boston College, 2015. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Biology.
79

A fragment-based drug discovery approach for the development of selective inhibitors of protein kinase CK2

Mitchell, Sophie Lousie January 2018 (has links)
Over the last twenty years, fragment-based drug discovery (FBDD) has emerged as a highly successful way to provide lead compounds for subsequent optimisation into drug candidates. Initial hits usually exhibit lower potency than those identified by more traditional techniques, such as High-Throughput Screening (HTS), but the optimisation phase of FBDD is highly efficient, thus providing superior lead-like compounds. The recent application of FBDD in a variety of protein kinase campaigns has successfully led to the identification of novel binding sites and highly efficient chemical ligands. This demonstrates the utility of the FBDD strategy against well-established kinase targets, where selectivity is otherwise challenging due to significant conservation of the ATP-binding site. Protein kinase CK2 is a ubiquitously expressed and constitutively active regulator of cell growth, proliferation and apoptosis. Elevated levels of CK2 protein and activity have historically been involved in human cancer, including lung, cervical and head and neck cancer types, and its overexpression is associated with worse prognosis. A number of CK2 inhibitors are currently available displaying activity against multiple cancers in vitro and in the clinic, however the majority of these candidates target the ATP-binding site and thus display poor selectivity in kinase panel assays. Here we explore the application of FBDD towards the development of potent and selective inhibitors of the catalytic α-subunit of CK2. This project exploits a novel, conserved binding site, named the αD pocket, for the generation of allosteric inhibitor molecules. Following structure-based optimisation of a potent inhibitor series, and characterisation of a previously unreported binding mode, a fragment linking strategy between the lead αD-site fragment and a low-affinity pseudosubstrate peptide is investigated. This work validates the utility of FBDD towards the discovery of new binding modes, presents a first in class CK2α allosteric inhibitor series and provides the first X-ray crystal structure of protein kinase CK2 in complex with a ligand binding in the substrate-binding channel.
80

Combining library screening approaches, and modifying peptides with helix constraints, to generate novel antagonists of oncogenic Activator Protein-1

Baxter, Daniel January 2017 (has links)
Activator Protein-1 (AP-1) is an oncogenic transcription factor that is dysregulated in numerous human cancers, making it an attractive therapeutic target. AP-1 forms via interaction of cJun and cFos proteins, which intertwine to generate a ‘coiled coil’ (CC) structure. Thus, the cJun/cFos α-helical CC domains responsible for dimerisation are appealing targets for inhibiting AP-1 formation and activity. Helical peptide antagonists that sequester cJun can be derived from the cFos CC domain by selection of more optimal amino acids for increased binding affinity. Peptides can then be downsized and modified to improve therapeutic potential. Two approaches aimed to identify novel short peptides against cJun. The first was to covalently cyclise amino acid side chains in existing cFos-derived peptide “FosW”, with the aim of constraining FosW into a stable helix to allow downsizing without significant loss of binding structure and affinity. Using circular dichroism spectroscopy and isothermal titration calorimetry, a series of helix constrained peptides were characterised, from which a peptide was identified that retained 88 % of FosW binding affinity whilst being 22 % shorter, and which entered breast cancer cells in vitro, with preliminary data suggesting potential ability to inhibit AP-1 in cellulo. The second approach was to combine two existing high-throughput peptide selection systems, with the aim of benefitting from overlap in their strengths and weaknesses. Combination of in vitro CIS display and in cellulo Protein-fragment Complementation Assay successfully isolated a high affinity peptide from a hugely diverse library, and future refinements to further exploit this approach, particularly for short peptide selection, were formulated. Thus, molecules and techniques derived here may expedite the future development of therapies for cancers featuring AP-1 dysregulation.

Page generated in 0.0516 seconds