• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational analysis and optimisation of the inlet system of a high-performance rally engine

Makgata, Katlego Webster 24 January 2006 (has links)
In the rally car racing there is a need for maximum power throughout the race. While this is not possible through the entire engine speed range, it is possible to manipulate the engine speed at which maximum power is obtained by changing the engine configuration. One of the most effective ways to do this is to modify the intake system to allow for more air into the engine, thus allowing for more fuel to be burnt and more power to be obtained. This dissertation focused on improving the inlet system of a high-performance rally car race engine by using computational fluid dynamics (CFD) and mathematical optimisation techniques, the combination of which is called a computational flow optimisation (CFO) system. Historically, designers have been aware of the importance of proper intake design and with improving technology and a better understating of wave theory, as applied to manifold flow, development moved at fast pace. The application of wave theory to intakes led to a more academic approach to engine tuning, where mathematical relationships were developed to describe the influence of certain engine parameters on air intake. Numerical methods used to solve for flow in intake systems have also developed due to the advances in computer capabilities and are used in the study in the form of CFD and 1-D gas dynamics (as implemented in the engine simulation code used in the study, namely EngMod4T). These are combined with optimisation to arrive at an improved design. The CFD simulations are transient in nature in order to capture the pulse interactions and their influence on the mass of air inducted by the intakes. The first case considered is that of a single intake exposed to atmosphere. To relate the results of the single intake simulation to a full-intake simulation, the mass of inducted air is assumed to be equal for all four intakes. This assumption was found to be flawed as shown by the simulation that followed that took into consideration all four intakes also open to atmosphere. The simulation showed that the intakes actually induct differing amounts of air and the total amount is less than for four single trumpets. A more comprehensive simulation was conducted where the airbox was included and the resulting total mass inducted showed that even less air is inducted by this setup. The results of the latter were used as the basis of the optimisation study that followed. Various airbox designs, obtained from the optimisation software LS-OPT, were simulated and resulted in an improved airbox design that inducts 6.2% more air than the original airbox. And since there is direct relationship between mass of air inducted and engine power produced, it is expected that the engine power would also increase by 6.2%. The study demonstrates the successful implementation of a CFO system to solve a complex industrial flow problem. With the increase of computing power and increasing affordability of such systems coupled with the ease-of-use of commercial CFD software, CFO should become more common in industrial application. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
2

Morphodynamics and Sediment Pathways of the John's Pass-Blind Pass Dual-Inlet System: Pinellas County, Florida

Horwitz, Mark H. 05 July 2017 (has links)
The morphodynamics of an inlet channel draining an estuary or bay are governed by a complex system of temporally and spatially varying physical processes, including wind, waves, tides, sediment transport, and both tide and wave driven currents. In addition, sediment availability and characteristics in conjunction with underlying geologic framework bear on the morphology and morphologic behavior of an inlet system. This study examines the morphodynamics, sediment transport patterns and time-series morphologic change of John’s Pass and Blind Pass, two structured tidal inlets that collectively make up a dual-inlet system sharing the tidal prism of northern Boca Ciega Bay, in Pinellas County, Florida. To quantify wave and tidal forcing and response mechanisms an array of hydrodynamic sensors were deployed over a 12 month period at both inshore and offshore locations. In order to capture morphologic changes and quantify volumetric changes within the inlets, bathymetric surveys of the inlets were conducted in 2010, 2011, 2012, and 2014. Similarly, bi-monthly beach survey data for the same range of time was acquired in order to quantify volumetric changes along adjacent stretches of beach. In addition to gaining insights into sediment pathways based on morphologic and volumetric variability, those data were also used to develop a regional sediment budget along the studied stretch of coast. To gain insights into the morphodynamics of the dual-inlet system, bathymetric and hydrodynamic data was used to develop a numerical model of the dual inlet system. Numerical model simulations based on existing or baseline conditions were compared with numerical simulations employing synthetic bathymetric and hydrodynamic conditions in order to examine inlet behavior under a range of different morphological and hydrodynamic conditions. John’s Pass is the dominant of the two inlets. It exhibits mixed-energy straight morphology and captures ca 81% of the available tidal prism. The inlet has a well-developed mature ebb shoal, and actively bypasses sediment from one side of the inlet to the other supplying sediment to the downdrift littoral system. Blind Pass captures less than 20% of the available tidal prism, and while also exhibiting mixed-energy morphologic characteristics has a less well developed ebb shoal that currently has not fully established a sediment bypassing system. Both inlets channels and ebb shoals have been dredged on multiple occasions to provide sediment for the nourishment of nearby chronically eroding stretches of beach. Dredge pits excavated along the distal margins of the ebb shoals are infilling at rates substantially slower than expected due to limited sediment transport along those regions of the ebb shoal, while inlet channel dredge pits infill at rapid and expected rates. The objective of this study was to characterize the morphodynamics of the dual-inlet system with the aim of identifying sediment pathways and bypassing mechanisms, and quantify a balanced regional sediment budget in order to design more sustainable approaches to inlet management.
3

Acoustic Characterization of Turbochargers and Pipe Terminations

Tiikoja, Heiki January 2012 (has links)
In search for quieter engines there is a need for a better understanding of the acoustic properties of engine intake and exhaust system components. Besides mufflers which have the purpose of reducing pressure pulses originating from the internal combustion (IC) engine, there are many components in a modern car exhaust and intake system, e.g., air-filters, coolers, catalytic converters, particulate filters - all having an effect on the pressure pulses or sound field in the system. In this work the focus is on the turbocharged IC-engine where both, sound scattering (reflection and transmission) and sound generation from automotive turbochargers are studied. In addition, sound reflection from an open ended pipe, such as the tailpipe of an IC-engine exhaust is investigated.             Accurate and efficient methods to fully characterize turbochargers by measuring the acoustic two-port have been developed.  Compared to earlier work, a number of modifications are suggested for improving the quality of the results. A study on three different automotive turbochargers is also presented, including data for sound scattering for both the compressor and turbine. The results for the transmission of sound, which is of interest for the ability of a turbocharger to reduce noise coming from the engine, is plotted for all tested cases against a dimensionless frequency scale (Helmholtz-number). This makes it possible to generalize the result in order to draw conclusions about the behavior for any turbocharger.              The sound generation was also studied and three different methods to estimate the sound power are suggested. The methods were used to investigate sound generation at different operating points and identify source mechanisms for a turbocharger compressor.             An accurate method for measuring the reflection of plane acoustic waves from a pipe termination in a duct with hot gas flow has been developed and tested. Representing the acoustical conditions at an exhaust tail-pipe, the data obtained is important for effective modeling of exhaust systems. The experimental results of the reflection coefficient were compared with Munt`s theory on flow duct openings. The measurements were carried out for air jet velocities up to Mach 0.4 and for flow temperatures up to 100°C in order to study temperature effects on the reflection properties. It was concluded, that the experimental results agree well with the Munt theory.
4

Studies of flow duct acoustics with applications to turbocharged engines

Rämmal, Hans January 2009 (has links)
A number of experimental and theoretical studies, performed in the field of technical flow duct acoustics are presented in this thesis. The acoustical methods treated are implemented on turbocharged IC-engines and engine gas exchange system components. A new method based on the well-known two-load technique has been developed. The method was applied to characterise the source data of various piston-engines with non-linear behaviour including a 6 cylinder turbo-charged truck diesel engine. The source characterisation results were compared to the results obtained using the linear two-load technique. It was demonstrated that the new non-linear multi-load technique gives improved results when the source is slightly non-linear. The use of active one-port models has been tested to characterize an air terminal device (ATD) as a source of flow generated noise. In order to predict the noise generation at different operating points of the device a scaling law was derived and verified. In the experimentally derived scaling law a flow speed dependence of 3 was found for the narrow band spectra, corresponding to a dipole-like behavior of the source in the plane wave range. The proposed technique was validated successfully and the results indicated a good prediction of in-duct sound generation by the air terminal device. Sound reflection from hot flow duct openings has been investigated experimentally. The reflection coefficient was measured for flow temperatures up to 500 ºC and jet velocities up to 108m/s. The results have been compared with famous Munt’s theory. It was concluded that at low Mach number and Helmholz number cases the results agree well with the Munt’s model. This was the first experimental validation of the theory for hot flow conditions. Experimental procedures to determine the sound transmission through automotive turbo-charger compressors were developed and described in detail. An overview of a unique turbocharger testing facility established at KTH CICERO in Stockholm is given. The facility can be used to measure acoustic two-port data for turbo-compressors. Results from measurements on a passenger car turbo-compressor are presented and the influence of operating conditions on the sound transmission is discussed. Current wave action models developed in CMT for computation of the gas exchange processes in I.C. engines have been implemented to determine the acoustic wave transmission through the turbo- compressor. The models are validated with the experimental data and the results are presented for different operating conditions of a Volvo passenger car turbo-compressor. / QC 20100809

Page generated in 0.047 seconds