• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 88
  • 73
  • 38
  • 24
  • 12
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 635
  • 635
  • 125
  • 113
  • 112
  • 77
  • 73
  • 72
  • 71
  • 70
  • 69
  • 65
  • 65
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Assessment and Analysis of the Restriction of Retroviral Infection by the Murine APOBEC3 Protein

Aydin, Halil Ibrahim 26 August 2011 (has links)
Human APOBEC3 proteins are host-encoded intrinsic restriction factors that can prevent the replication of a broad range of human and animal retroviruses such as HIV, SIV, FIV, MLVs and XMRV. The main pathway of the restriction is believed to occur as a result of the cytidine deaminase activity of these proteins that converts cytidines into uridines in single-stranded DNA retroviral replication intermediates. Uridines in these DNA intermediates disrupt the viral replication cycle and also alter retrovirus infectivity because of the C-to-T transition mutations generated as a result of the deaminase activity on the minus strand DNA. In addition, human APOBEC3 proteins also exhibit a deamination-independent pathway to restrict retroviruses that is not currently well understood. Although the restriction of retroviruses by human APOBEC3 proteins has been intensely studied in vitro, our understanding of how the murine APOBEC3 (mA3) protein restricts retroviruses and/or prevents zoonotic infections in vivo is very limited. In contrast to humans and primates that have 7 APOBEC3 genes, mice have but a single copy. My study of the function and structure of mA3 revealed that it has an inverted functional organization for cytidine deamination in comparison to the human A3G catalytic sites. I have also found that disruption of the integrity of either of these catalytic sites substantially impedes restriction of HIV and MLV. Interestingly, our data shows that mA3 induces a significant decrease in retroviral activity of HIV and MLVs by exploiting both deamination-dependent and -independent pathways. However, the deaminase activity of mA3 is essential to confer long-term restriction of retroviral infection. My observations suggest that mA3 has dual activities, both deamination-dependent and -independent, that work cooperatively to restrict a broad range of human and animal retroviral pathogens. In the context of the intrinsic immune system, APOBEC3 proteins provide a powerful block to the transmission of retroviral pathogens that very few have found ways to evade.
72

Regulation of TLR9-induced Innate Immune Responses in Sheep Peyer's Patches.

Booth, Jayaum S. 20 August 2009 (has links)
One of the fundamental questions in mucosal immunology is how the intestine maintains tolerance to food antigens and commensal flora, and yet it is capable of mounting immune responses to pathogens. Peyers patches (PP) are lymphoid aggregates that are found in the small intestine and are the primary sites where adaptive immune responses are initiated in the intestine. An understanding of how PP cells regulate innate immune responses may provide information on how immune responses are regulated in the intestine. The toll-like receptors (TLRs) are a family of pattern recognition receptors (PRR) which provide a sensory mechanism for the detection of infectious threats. TLR9 recognizes bacterial DNA or synthetic CpG oligodeoxynucleotides (ODN). Cells that express TLR9 when stimulated with CpG ODN proliferate and produce Th1-like pro-inflammatory cytokines and upregulate co-stimulatory molecules. Because the intestine is constantly exposed to bacterial DNA from commensal flora, immune cells from the gut must have evolved mechanisms to modulate responses to TLR9 stimulation to prevent responses to harmless bacteria. Our hypothesis is that innate immune responses to the TLR9 agonist CpG ODN in Peyers patches (PP) are attenuated compared to other tissues such as blood or lymph nodes. This is due to local regulatory mechanisms unique to the intestinal microenvironment.<p> We conducted a number of experiments to test this hypothesis. We initially assessed the immunostimulatory activity of three available classes of CpG ODN in lymph nodes (LN), peripheral blood mononuclear cells (PBMC) and PP since this had not been done in ruminants. We found that CpG ODN induced strong IFNá, IFN-gamma, IL-12, lymphocyte proliferation and NK-like activity in LN and PBMC. In contrast, these responses were significantly less in PP stimulated with CpG ODN. We wondered whether the reduced responses of PP cells to CpG ODN were unique to the TLR9 agonist. For this reason we tested responses of cells from these tissues to poly (I:C), LPS, and single-stranded RNA, which are agonists for TLR3, TLR4, and TLR7/8 respectively. Additionally, we tested combinations of TLRs since others have reported that multiple TLR agonists may induce synergistic responses. All TLR agonists or their combinations either failed to induce detectable responses or the responses were significantly less in PP compared to other tissues. Thus we concluded that PP cells responses to TLR stimulation were attenuated. In all tissues tested, there were no synergistic responses (IFN-alpha, IFN-gamma and lymphocyte proliferation) following stimulation with combinations of agonists. However, there was inhibition of PBMC responses when TLR7/8 agonists were combined with CpG ODN (TLR9 agonist). Importantly, TLR7/8 agonists reduced the CpG-induced proliferative responses in purified blood B cells. Interestingly, ovine B cells constitutively expressed TLR7/8 and TLR9 mRNA, suggesting the potential for cross-talk between the receptors.<p> Interestingly, cell from all isolated tissues [ileal PP (IPP), jejunal PP (JPP), mesenteric LN (mLN) and PBMC] expressed similar levels of TLR9 mRNA, suggesting that the reduced responsiveness to CpG ODN stimulation in PP was not due to a lack of TLR9 expression.<p> Surprisingly, we observed that PP cells spontaneously secreted significant amounts of the immunoregulatory cytokine IL-10. Furthermore, we confirmed that CD21+ B cells were the source of the IL-10. We then examined the role of IL-10 in regulating IFN and IL-12 responses in PP. Neutralization of IL-10 resulted in a significant increase in the numbers of CpG-induced IFNá-secreting cells detected and in IFN-gamma and IL-12 production by PP cells (both follicular and interfollicular lymphocytes). Similarly, depletion of the CD21+ B cells resulted in significant increases in IFNá, IFN-gamma and IL-12 responses. These observations support the conclusion that IL-10-secreting PP CD21+ B cells suppress innate immune responses in PP. Further characterization by flow cytometry revealed that these cells were CD1b-CD5-CD11c-CD72+CD21+ IgM+ B cells. We have proposed that these IL-10-secreting PP CD21+ B cells are a novel subset of regulatory B cells (Bregs).<p> Finally, we examined the capacity of IL-10 secreting B cells (Bregs) to respond to CpG ODN. To achieve this, we compared CD21+ B cells from blood and JPP. Unlike blood CD21+ B cells, CD21+ B cells from JPP proliferated poorly in response to CpG ODN. Moreover, PP CD21+ B cells, unlike blood CD21+ B cells, do not secrete IgM or IL-12 in response to CpG stimulation, although both PP and blood CD21+ B cells express similar level of TLR9 mRNA. Neutralization of IL-10 did not enhance CpG-induced proliferative responses in PP CD21+ B cells. Thus IL-10 does not play a direct role in the hyporesponsiveness of PP CD21+ B cells to CpG ODN. To further explore the mechanism by which PP Bregs fail to respond to CpG ODN stimulation, we used a kinome analysis to determine whether the TLR9 pathway was functional in PP Bregs compared to blood CD21+ B cells. We observed that peptides representing critical adaptor molecules downstream of TLR9 such as IRAK1, TAK1, Casp8, p-38 MAPK, JNK, FOS, IKKá, NF-KB-p65 were not phosphorylated in JPP CD21+ B cells following CpG ODN stimulation. However, in blood CD21+ B cells stimulated with CpG ODN, the same peptides on the array were all highly phosphorylated leading to a functional TLR9 signaling pathway. Thus PP Bregs have evolved mechanisms by which the TLR9 signaling pathway is not activated following exposure to the TLR9 agonist, CpG ODN.<p> In conclusion, we clearly demonstrated that TLR9-induced responses in cells from PP are significantly attenuated. This is a consequence of PP CD21+ B cells (Bregs) that spontaneously secrete IL-10, which in turn conditions an anti-inflammatory environment in this tissue leading to poor cytokine responses to the TLR9 agonist, CpG ODN. Additionally, we show that Bregs are unresponsiveness to TLR9 stimulation. This unresponsiveness is due to regulatory mechanisms in Bregs leading to a dysfunctional TLR9 signaling pathway. These may represent strategies by which PP dampen innate responses to pathogen-associated molecular patterns (PAMPs) in intestinal immune tissues to maintain intestinal immune homeostasis. These conclusions are consistent with our hypothesis that TLR responses in PP cells are attenuated, and this is due to B cell-mediated regulatory mechanisms that are unique to the intestinal microenvironment.
73

The association of mannose-binding lectin polymorphisms with mycobacterial neck lymphadenitis

Wang, Jui-Chu 31 August 2011 (has links)
Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. The high incidence is still found in Taiwan. There is strong evidence that host genes influence individual susceptibility to tuberculosis. Young children, like immunocompromised patients, once infected are at increased risk for TB disease and progression to extrapulmonary disease. Thus far, to identify the genes responsible for the variation in the human susceptibility/resistance to TB has remained elusive. Mannose-binding lectin (MBL) activates the complement system in an antibody-independent manner, enhances complement-mediated phagocytosis, and plays an important role in innate immunity in the regulation of inflammatory cytokine release by monocytes. It is one of the molecules that have been suggested to have a link to human susceptibility or protection against infection. According to some studies (mostly conducted in adult populations) , low levels of MBL associated with variant alleles at the promoter and exon 1 regions of MBL protect against tuberculosis. Other investigators instead claim that protection against the disease is associated with high levels of MBL. In this study we aimed to investigate the relationships between the susceptibility to TB and MBL gene polymorphisms in children with cervical mycobacterial lymphadenitis infected by M. tuberculosis.139 case patients with cervical mycobacterial lymphadenitis and 102 unrelated healthy control subjects were tested by real-time PCR for polymorphisms at the promoter and the exon 1 regions of the MBL gene. Diagnosis of mycobacterial lymphadenitis infected by M. tuberculosis, based on findings of pathological examination of the lymph nodes, was confirmed by acid-fast stain and TB PCR.The frequency of A allele was significantly higher in TB+ patients compared with TB- controls (82.7% vs 72.6%; odds ratio 1.813; p=0.007). The frequency of high-producer MBL2 genotypes (A/A) was higher in TB+ patients than in TB- subjects (70.5% vs 45.1%, odds ratio 2.91, p<0.001), while patients carried the B alleles (A/B and B/B) that have decreased levels of MBL was inversely associated with mycobacterial infectivity (29.5% vs 54.9%; odds ratio 2.910; p<0.001). The frequencies of MBL promoter -550 genotypes also revealed a significant difference between TB+ and TB- groups (p = 0.046), but in contrast, with significantly higher frequency of L/L genotype (of low MBL level) in TB+ patients (34.5% vs 21.6%; odds ratio 1.918; p=0.029). The frequencies of MBL promoter -221 genotypes (X and Y) was similar in TB+ and TB- groups.This study supports the conclusion that MBL can protect or predispose the host to tuberculosis, depending on the host¡¦s haplotype pair.
74

Negative Feedback Regulation of RIG-I-mediated Antiviral Signaling by Aichi Virus

Lin, You-Sheng 10 September 2012 (has links)
Aichi virus (AiV) is a small, nonenveloped RNA virus categorized to Picornaviridae. AiV infection causes mild gastroenteritis, but in neonates, AiV usually causes the risk of certain enterovirus-related clinical syndromes, such as fever, nausea, vomiting and diarrhea. The first case of AiV infection in Taiwan was diagnosed from a young patient with diarrhea in Kaohsiung Veterans General Hospital, and the AiV was successfully isolated. Antiviral innate immune system of our body plays the major role to defense virus invasion. Because AiV is an emerging picornavirus, the knowledge about its pathogenesis and the interaction with host innate immunity were totally absent. This study aims to investigate the mechanism of AiV regulating innate immune response. We first demonstrated that AiV is a type I IFN sensitive virus. IFN-£\2 treatment potently inhibited AiV replication. Real-time quantitative PCR data indicated that AiV induced only small amout of type I IFN gene expression, and the similar result was observed using IFN-£] luciferase reporter assay. In addition, the AiV triggered IFN-£] luciferase activity was progressively decreased in the late phase of infection. Immunoblotting assay showed that AiV evidently activated IRF-3 and IRF-7, the transcription factors of type I IFN induction. However, the retinoic acid inducible gene I (RIG-I) protein was cleavaged and its activity was downregulated by AiV. This data suggested that AiV triggered low level of type I IFN response may due to the negative feedback regulation of RIG-I activity. This immune evasion might be important for AiV replication in cells. Our study first reveals the status of innate immune response of AiV infection, and provides the basic virological theory for the development of anti-AiV drugs and vaccines in the future.
75

Innate immunity to Rhodococcus equi: the response of adult and juvenile equine neutrophils

Nerren, Jessica Rachel 15 May 2009 (has links)
Blood was obtained from 5 adult horses and 16 juvenile horses (foals) at the time of birth and subsequently at 2-, 4-, and 8-weeks of age. Neutrophils from adult horses were purified and incubated for 2 h and 4 h with media, avirulent R. equi, virulent R. equi, or recombinant-human granulocyte-macrophage colony stimulating factor (rhGM-CSF). Neutrophils from foals were purified and incubated for 2 h and 4 h with media or virulent R. equi. Total RNA was extracted from both adult and foal neutrophils immediately after purification to measure baseline expression levels (0 h), and immediately after each of the prescribed incubation times. For each sample, 1 µg of total RNA was reverse-transcribed and analyzed for differential gene expression using real-time PCR. After 2 h and 4 h incubation with virulent or avirulent R. equi, neutrophils from adult horses expressed significantly (P< 0.05) greater TNFα, IL-12p40, IL-6, IL-8, and IL-23p19 mRNA relative to expression by unstimulated neutrophils, but not IFNγ or IL-12p35 mRNA. Furthermore, virulent R. equi induced significantly greater IL-23p19 mRNA expression than avirulent R. equi. Stimulation with rhGM-CSF of adult equine neutrophils failed to induce significant changes in cytokine expression. In foal neutrophils, stimulation with virulent R. equi induced significantly greater expression of IFNγ, TNFα, IL-6, IL-8, IL-12p40, and IL-12p35 mRNA relative to expression by unstimulated neutrophils. Furthermore, there were significant effects of age on expression of IL-6, IL-8 and IL-12p40 mRNA. Neutrophil mRNA expression of IL-6 and IL-8 in newborn foals was significantly greater than expression at 2-, 4-, and 8-weeks of age. There was no significant difference between unstimulated and R. equi-stimulated neutrophils from newborn and 2-week-old foals in expression of IL-12p40; however, expression of IL-12p40 by R. equi-stimulated neutrophils from 4- and 8-week-old foals was significantly greater than expression by unstimulated neutrophils. These results demonstrate that R. equi-stimulated neutrophils are a source of many pro-inflammatory cytokines, and that the magnitude of this expression with respect to IL-6, IL-8, and IL-12p40 mRNA expression was influenced by age. Collectively, the data presented indicate a non-phagocytic role for neutrophils that may influence the type of adaptive immune response to R. equi.
76

Concerning Brucella LPS: genetic analysis and role in host- agent interaction

Turse, Joshua Edward 30 October 2006 (has links)
B rucella lipopolysaccharide is an important component of virulence in brucellosis. Recent research in macrophage models has shown that Brucella LPS does not behave like classical LPS by stimulating potent inflammatory responses. The central hypothesis of this work is that O-antigen is dynamic signaling molecular and participates in complex interactions with the host to promote productive infection. A corollary to this is that the host environment is dynamic, and Brucella has evolved mechanisms to cope with changing environments. In an effort to understand the contribution of Brucella LPS to virulence and pathogenesis, the function of a metabolic locus important in the synthesis of LPS has been demonstrated and complemented. The spontaneous loss of LPS expression has been characterized. Contribution of LPS to acquisition of the host environment in tissue culture and mouse models has been explored. This work demonstrated that genes outside the O-antigen biosynthesis ( manBA) cluster contribute to LPS biosynthesis. Further high frequency mutation involving manBA is partly responsible for observed dissociation of Brucella strains. Finally, work herein attempts to look at the role of LPS in acquisition of the host environment and shows that LPS is important for recruiting particular cell populations within a host model of brucellosis.
77

Differential Innate Immune Stimulation Elicited by Adenovirus and Poxvirus Vaccine Vectors

Teigler, Jeffrey Edward 25 February 2014 (has links)
Vaccines are one of the most effective advances in medical science and continue to be developed for applications against infectious diseases, cancers, and autoimmunity. A common strategy for vaccine construction is the use of viral vectors derived from various virus families, with Adenoviruses (Ad) and Poxviruses (Pox) being extensively used. Studies utilizing viral vectors have shown a broad variety of vaccine-elicited immune response phenotypes. However, innate immune stimulation elicited by viral vectors and its possible role in shaping these vaccine-elicited adaptive immune responses remains unclear. Here we show that Ad and Pox vectors display profound intra- and inter-group differences in innate immune cytokine and chemokine elicitation. The CD46-utilizing vectors Ad35, Ad26, and Ad48 induced greater anti-viral and proinflammatory cytokines and chemokines relative to Ad5 in vaccinated rhesus monkeys and stimulated human PBMC. Ad fiber protein, as well as other capsid components, influenced resultant Ad vector innate stimulatory phenotypes. Analysis of human sera from Ad26-vaccinated volunteers showed similar anti-viral and proinflammatory cytokine and chemokine elicitation. Mechanistic analysis of Ad innate immune stimulation showed greater amounts Ad35 and Ad26, and small amounts of Ad5, traffic to the late endosome following infection. Innate immune stimulation by all three was reduced by inhibition of endosomal acidification, Cathepsin B, and Caspase-1, suggesting a common set of innate immune sensors triggered by Ads between 0-6 hours post-infection, in agreement with trafficking data showing Ad vector colocalization in the late endosome at similar time points. These data suggest a model mechanism explaining differences in observed Ad vector innate immune stimulation phenotypes. Similar to results obtained with Ad vectors, analysis of innate cytokine and chemokine responses elicited by Pox vectors ALVAC, MVA, and NYVAC showed that all three were distinct, with the canarypox-based vector ALVAC eliciting a unique potent proinflammatory response. Together these results reveal surprising and pronounced differences in innate immune stimulatory properties of viral vectors. Furthermore, these results could lead to possible strategies for targeted construction of vaccines for desired innate immune phenotypes, and have profound implications on vaccine design against infectious diseases and cancers, as well as gene therapy.
78

Population Genetics and Evolution of Innate Immunity in House Mice

Salcedo, Tovah January 2009 (has links)
Whole-genome studies of rates of protein evolution show that genes underlying reproduction and immunity tend to evolve faster than other genes, consistent with the frequent action of positive selection. The evolution of immunity has been well-studied at the interspecific level, but much remains unknown about the population-level dynamics of immunity. This project described genetic variation at immunity and non-immunity loci as well as variation among levels of infection for diverse pathogens in a natural population of mice from Tucson. Analysis of autosomal and X-linked loci in the native range of Mus domesticus, the species from which Tucson mice are primarily descended, revealed low levels of variation consistent with a recent population expansion, resulting in a slight excess of rare alleles across the genome. Genetic variation among a set of classical inbred strains represented a small fraction of wild variation. An overlapping set of genes sequenced in mice from Tucson revealed that there is significant introgression from Mus castaneus. After controlling for gene flow, Tucson mice showed evidence of a mild bottleneck that produced a slight excess of intermediate frequency alleles, but did not result in a dramatic loss of genetic variability. Most of the 15 pathogens and parasites studied in Tucson were found at low to intermediate frequency, and most mice had one to three infections, suggesting that there are many opportunities for host-pathogen coevolution, and a possible role for coinfection. A study of Fv-4, which confers resistance to murine leukemia viruses, confirmed that the resistance allele originated in M. castaneus and is now found at intermediate frequency in Tucson after introduction through gene flow. Finally, a study of the recently duplicated Ceacam1 and Ceacam2 genes, previously shown to be involved in resistance to mouse hepatitis virus (MHV), revealed that a gene conversion event moved a suite of mutations from Ceacam2 to Ceacam1. An elevated rate of protein evolution showed that Ceacam2 had experienced positive selection after duplication. Interestingly, there was no association between MHV antibody presence and Ceacam1 genotype in Tucson. This project showed that gene flow and gene conversion mediated resistance to infections in wild mice.
79

Immunomodulatory effects of LL-37 in the epithelia

Filewod, Niall Christopher Jack 11 1900 (has links)
The cationic host defence peptide LL-37 is an immunomodulatory agent that plays an important role in epithelial innate immunity. Previously, concentrations of LL-37 thought to represent levels present during inflammation have been shown to elicit the production of cytokines and chemokines by epithelial cells. To investigate the potential of lower concentrations of LL-37 to alter epithelial cell responses, normal primary keratinocytes and bronchial epithelial cells were treated with pro-inflammatory stimuli in the presence or absence of 1 – 3 μg/ml LL-37. Low, physiologically relevant concentrations of LL-37 synergistically increased IL-8 production by both proliferating and differentiated keratinocytes in response to IL-1β and the TLR5 agonist flagellin, and synergistically increased IL-8 production by bronchial epithelial cells in response to IL-1β, flagellin, and the TLR2/1 agonist PAM3CSK4. Treatment of bronchial epithelial cells with LL-37 and the TLR3 agonist poly(I:C) resulted in synergistic increases in IL-8 release and cytotoxicity. The synergistic increase in IL-8 production observed when keratinocytes were co-stimulated with flagellin and LL-37 was suppressed by pretreatment with inhibitors of Src-family kinase signalling and NF-κB translocation. These data suggest that low concentrations of LL-37 may alter epithelial responses to microbes in vivo. Microarray analysis of keratinocyte transcriptional responses after LL-37 treatment suggest that LL-37 may alter the expression of growth factors and a number of genes important to innate immune responses. LL-37 may thus play a more important role than previously suspected in the regulation of epithelial inflammation; an improved understanding of the mechanisms by which LL-37 alters chemokine responses could lead to the development of novel anti-infective and anti-inflammatory therapeutics.
80

Plasma Pattern Recognition Receptors of Walleye (Sander vitreus M.) with an Emphasis on Mannose-binding Lectin-Like Protein and Viral Hemorrhagic Septicemia Virus

Reid, Mary Alexandra 17 August 2012 (has links)
Walleye (Sander vitreus M.) are valuable in commercial and recreational fisheries and are affected by bacterial, fungal and viral disease. Pattern recognition receptors (PRRs) are germline-encoded and constitutively expressed and bind non-self or altered-self for immune recognition. Walleye were hypothesised to have circulating PRRs that were capable of binding diverse pathogens. These PRRs were hypothesised to increase with infection, be distributed in immunologically relevant tissues and to be strain and age specific. PRR binding was measured by affinity chromatography, plasma binding assays,SDS-PAGE, Western blots, ELISA, PCR, and immunohistochemistry. ELISA and affinity chromatography assays were developed in rainbow trout (Oncorhynchus mykiss) with known PRRs. Trout ladderlectin was confirmed as a PRR binding viral hemorrhagic septicemia virus (VHSV). These techniques were adapted to walleye using Flavobacterium columnare, chitin, VHSV and Sepharose resin. A 22 kDa protein bound to F. columnare, a 17 kDa protein bound to chitin and a 34 kDa protein bound to VHSV were identified as similar to bass apolipoprotein, carp C3 and rainbow trout intelectin, respectively. PCR and 3'-RACE-PCR were used to generate nucleotide sequence to confirm identity of walleye apolipoprotein and mannose-binding lectin (MBL)-like protein from the intelectin-like sequence. Two rabbit polyclonal antibodies were raised to 34 and 67 kDa MBL amino acid sequences and used to verify MBL-like protein as a PRR for VHSV. Healthy walleye MBL-like protein plasma concentration was 7.5 ng/ml. Significant differences were found between geographically distant strains of walleye. An ELISA demonstrated that MBL-like protein had significant differences in binding affinity between multiple strains of VHSV and different viruses found in Ontario. MBL-like protein plasma levels increased with initial infection of naïve fish with waterborne and IP VHSV (107 pfu) but did not change with IP reinfection. Previous infection with VHSV significantly decreased walleye mortality. IHC of walleye shows MBL-like protein is distributed in epithelial surfaces, primarily skin, oropharynx, gill, gastrointestinal system, renal nephrons, connective tissue of gonads and plasma. There was no qualitative difference in MBL-like protein tissue distribution in healthy and VHSV-infected walleye. This is the first evidence for fish lectins binding viruses.

Page generated in 0.0667 seconds