• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermoelectric Performance of Spark Plasma Sintered Co4Ge6Te6 Ternary Skutterudite and Doped SnTe Compounds

Aminzare, Masoud 11 1900 (has links)
A large amount of thermal energy is being wasted every day from domestic and industrial usages such as home appliance and heating system, vehicle exhaust and many industrial processes including melting, refining, annealing, and forming. However, there were a significant impact on the environment and economy if one could recover this waste energy and convert it to useful energy for the industrial or domestic consumptions. Thermoelectric (TE) generators as a direct heat conversion technology are a promising approach to scavenge waste heat and to significantly improve the overall energy efficiency of energy-intensive industries. However, the energy conversion efficiency of current thermoelectric materials is insufficient to make the technology economically viable. In this study, we investigated two potential thermoelectric materials, Co4Ge6Te6 skutterudite and SnTe, in order to enhance their TE properties. Among all the state-of-the-art thermoelectric materials, skutterudites have been found to be brilliant candidates for thermoelectric applications due to their remarkable electronic transport properties. Ternary skutterudites are isostructural to their binary analogues with the advantage of lower lattice thermal conductivity than the unfilled binary skutterudites due to the increased structural complexity. Here, in order to further understand this system and its thermoelectric properties, polycrystalline Co4Ge6Te6 (CGT) was investigated as a model ternary skutterudite material. Spark plasma sintering (SPS) was used to solidify the samples. The microstructure, phase stability, compositional homogeneity and thermoelectric behaviour of the sintered samples under SPS condition were investigated. We found that SPS can form different crystalline phases due to the migration of highly mobile species inside the sample due to the applied electrical current. There were significant inconsistencies in the physical properties of the samples. We also realized that Sb-doped CGT samples yielded to the highest power factor reported for the CGT derivatives so far. Moreover, recent environmental regulations have restricted the use of lead in many real-life applications including thermoelectric power generators. SnTe as a lead-free chalcogenide-based material can be a promising TE candidate to attain high thermoelectric performance. However, the main issue with SnTe is high intrinsic Sn vacancies leading to low Seebeck coefficient and high electrical thermal conductivity. In this regard, we aimed to introduce different metallic species into the SnTe samples (Sn1-xAxTe, A= Co, Ni, Zn, Ge, and x = 0.01, 0.03, 0.05) to enhance their TE performance. Each metallic species presented different solubility and microstructural impact on the main SnTe phase and therefore caused variations in physical properties. Ge-doped samples had more uniform microstructures with a very few Ge-rich regions, which implies higher Ge solubility in SnTe matrix. The existence of impurity phases in the Co-, Ni-, Zn-doped samples yields lower lattice thermal conductivities without deterioration in charge transport properties, leading to higher ZT values relative to the pristine SnTe sample. Microhardness of the doped samples is also improved due to the crack growth suppression and crack branching. / Thesis / Master of Science (MSc)
2

Investigation of the Interactions between Biomolecules and Mesoporous Inorganic Materials in Biomolecule Immobilization for Bioseparation and Biocatalysis

Kim, Jungseung January 2011 (has links)
No description available.
3

Hybridní materiály se zlepšenými termomechanickými vlastnostmi / Hybrid materials with improved thermomechanical properties

Perchacz, Magdalena January 2017 (has links)
Epoxy resins have been broadly used in the industry for adhesives, laminates, coatings, composites, encapsulation of electronic devices, printed circuit boards, etc. Despite their excellent adhesion to different materials, heat and chemical resistance and good mechanical properties, they also exhibit few drawbacks like brittleness, high thermal expansion coefficient (CTE), poor resistance to crack initiation and growth. Therefore, the thesis is focused on the preparation of epoxy-silica hybrid materials exhibiting improved thermomechanical properties compared to the neat epoxides, without impairing their beneficial features. The main synthetic route of epoxy-silica hybrids' preparation has been the sol-gel process of alkoxysilanes, allowing either in-situ formation of high purity and homogeneity silica particles or creation of various siloxane structures in a form of liquid (sol) silica-based precursors. The sol-gel method, on one hand, helps to omit too high viscosity of nanofiller suspension and energy-intensive nanofiller dispergation problems, but on the other hand, is often associated with necessity to use solvents and to remove formed volatiles. Therefore, in the first part of the thesis, a simple solvent-free sol-gel procedure, enabling to minimize the side-effect of solvent evaporation and...
4

The Synthesis and Characterization of Ferritin Bio Minerals for Photovoltaic, Nanobattery, and Bio-Nano Propellant Applications

Smith, Trevor Jamison 01 July 2015 (has links)
Material science is an interdisciplinary area of research, which in part, designs and characterizes new materials. Research is concerned with synthesis, structure, properties, and performance of materials. Discoveries in materials science have significant impact on future technologies, especially in nano-scale applications where the physical properties of nanomaterials are significantly different than their bulk counterparts. The work presented here discusses the use of ferritin, a hollow sphere-like biomolecule, which forms metal oxo-hydride nanoparticles inside its protein shell for uses as a bio-inorganic material.Ferritin is capable of forming and sequestering 8 nm metal-oxide nanoparticles within its 2 nm thick protein shell. A variety of metal-oxide nanoparticles have been synthesized inside ferritin. The work herein focuses on three distinct areas:1) Ferritin's light harvesting properties: namely band gaps. Discrepancies in the band gap energies for ferritin's native ferrihydrite mineral and non-native minerals have been previously reported. Through the use of optical absorption spectroscopy, I resolved the types of band gaps as well as the energy of these band gaps. I show that metal oxides in ferritin are indirect band gap semiconductors which also contain a direct transition. Modifications to the ferrihydrite mineral's band gaps are measured as a result of co-depositing anions into ferritin during iron loading. I demonstrate that these band gaps can be used to photocatalytically reduce gold ions in solution with titanium oxide nanoparticles in ferritin. 2) A new method for manganese mineral synthesis inside ferritin: Comproportionation between permanganate and Mn(II) forms new manganese oxide minerals inside ferritin that are different than traditional manganese oxide mineral synthesis. This reaction creates a MnO2, Mn2O3, or Mn3O4 mineral inside ferritin, depending on the synthesis conditions. 3) Ferritin as an energetic material: Ferritin is capable of sequestering various metals and anions into its interior. Perchlorate, an energetic anion, is sequestered through a co-deposition process during iron loading and is tested with energetic binding materials. Peroxide, which can be used as an oxidant, is also shown to be sequestered within apoferritin and combined with an aluminum based fuel for solid rocket propellants.
5

"Síntese e caracterização de nanopartículas magnéticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material híbrido em nanotecnologia" / SYNTHESIS AND CHARACTERIZATION OF MAGNETIC COBALT FERRITE NANOPARTICLES COVERED WITH 3-AMINEPROPYLTRIETHOXYSILANE FOR USE AS HYBRID MATERIAL IN NANOTECHNOLOGY

Camilo, Ruth Luqueze 30 June 2006 (has links)
Atualmente com o advento da nanociência e nanotecnologia, as nanopartículas magnéticas têm encontrado inúmeras aplicações nos campos da biomedicina, diagnóstico, biologia molecular, bioquímica, catálise, etc. As nanopartículas magnéticas funcionalizadas são constituídas de um núcleo magnético, envolvido por uma camada polimérica com sítios ativos, que podem ancorar metais ou compostos orgânicos seletivos. Estas nanopartículas são consideradas materiais híbridos orgânico-inorgânicos de grande interesse em aplicações comerciais devido à particularidade das propriedades obtidas. Entre as aplicações importantes podemos citar: tratamento por magnetohipertermia, carregadores de fármacos para áreas específicas do corpo, seleção de moléculas específicas, biossensores, melhoria da qualidade de imagens por RMN, etc. O trabalho foi desenvolvido em duas partes: 1) a síntese do núcleo constituído de nanopartículas superparamagnéticas de ferrita de cobalto e, 2) o recobrimento do núcleo por um polímero bifuncional o 3-aminopropiltrietoxissilano. Os parâmetros estudados na primeira parte da pesquisa foram: pH, concentração molar da base, tipo de base, ordem de adição dos reagentes, modo de adição dos reagentes, velocidade de agitação, concentração inicial dos metais, fração molar de cobalto e tratamento térmico. Na segunda parte estudou-se: o pH, a temperatura, o catalisador, a concentração do catalisador, o tempo de reação, a relação H2O/silano, o tipo de meio, o agente umectante e a eficiência do recobrimento em relação ao pH. Os produtos obtidos foram caracterizados pelas técnicas de difratometria de raios-X (DRX), microscopia eletrônica de transmissão (MET), microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS), espectroscopia de emissão atômica (ICP-AES), espectroscopia por infravermelho (FTIR), análises termogravimétricas (TGA/DTGA), calorimetria exploratória diferencial (DSC) e curvas de magnetização (MAV) / Nowadays with the appear of nanoscience and nanotechnology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic-inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magnetohyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biossensors, enhancement of nuclear magnetic ressonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminepropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H2O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (MET), scanning electronic microscopy (MEV), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), themogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM)
6

"Síntese e caracterização de nanopartículas magnéticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material híbrido em nanotecnologia" / SYNTHESIS AND CHARACTERIZATION OF MAGNETIC COBALT FERRITE NANOPARTICLES COVERED WITH 3-AMINEPROPYLTRIETHOXYSILANE FOR USE AS HYBRID MATERIAL IN NANOTECHNOLOGY

Ruth Luqueze Camilo 30 June 2006 (has links)
Atualmente com o advento da nanociência e nanotecnologia, as nanopartículas magnéticas têm encontrado inúmeras aplicações nos campos da biomedicina, diagnóstico, biologia molecular, bioquímica, catálise, etc. As nanopartículas magnéticas funcionalizadas são constituídas de um núcleo magnético, envolvido por uma camada polimérica com sítios ativos, que podem ancorar metais ou compostos orgânicos seletivos. Estas nanopartículas são consideradas materiais híbridos orgânico-inorgânicos de grande interesse em aplicações comerciais devido à particularidade das propriedades obtidas. Entre as aplicações importantes podemos citar: tratamento por magnetohipertermia, carregadores de fármacos para áreas específicas do corpo, seleção de moléculas específicas, biossensores, melhoria da qualidade de imagens por RMN, etc. O trabalho foi desenvolvido em duas partes: 1) a síntese do núcleo constituído de nanopartículas superparamagnéticas de ferrita de cobalto e, 2) o recobrimento do núcleo por um polímero bifuncional o 3-aminopropiltrietoxissilano. Os parâmetros estudados na primeira parte da pesquisa foram: pH, concentração molar da base, tipo de base, ordem de adição dos reagentes, modo de adição dos reagentes, velocidade de agitação, concentração inicial dos metais, fração molar de cobalto e tratamento térmico. Na segunda parte estudou-se: o pH, a temperatura, o catalisador, a concentração do catalisador, o tempo de reação, a relação H2O/silano, o tipo de meio, o agente umectante e a eficiência do recobrimento em relação ao pH. Os produtos obtidos foram caracterizados pelas técnicas de difratometria de raios-X (DRX), microscopia eletrônica de transmissão (MET), microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS), espectroscopia de emissão atômica (ICP-AES), espectroscopia por infravermelho (FTIR), análises termogravimétricas (TGA/DTGA), calorimetria exploratória diferencial (DSC) e curvas de magnetização (MAV) / Nowadays with the appear of nanoscience and nanotechnology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic-inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magnetohyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biossensors, enhancement of nuclear magnetic ressonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminepropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H2O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (MET), scanning electronic microscopy (MEV), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), themogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM)
7

Synthesis and characterization of novel hybrid organic-inorganic materials / Syntes och karakterisering av nya hybrida organiska-oorganiska material

Blomdahl, Emil January 2021 (has links)
Efterfrågan på bättre och mer hållbart material ökar. Mer effektivt material kommer att behövas för att möta den ökande, globala efterfrågan. Hybrida organiska-oorganiska material är en typ av material som har varit av stort intresse nyligen, och kan beskrivas som en typ av material som består av både organiska och oorganiska komponenter. Denna avhandling har fokuserat på hybrida organiska-oorganiska material inspirerade av den klassiska perovskitstrukturen ABX3, där komponent A är en organisk katjon, komponent B är en divalent metalkatjon och komponent X är en anjon. Hybrida organiska-oorganiska material som är utgår från den klassiska perovskitstrukturen kan ha olika funktionella egenskaper och en bred variation av tänkbara applikationer. Några exempel på dessa egenskaper och möjliga applikationer inkluderar god fotokonduktivitet för solceller, utmärkt emissionsegenskaper för ljusdioder och justerbara dielektriska egenskaper för elektroniska växlar och sensorer.  De fysiska egenskaperna av det hybrida organiska-oorganiska materialet beror på kristallstrukturen av materialet, som i sig bestäms av valet av komponenter. På grund av de många möjligheter av organiska och oorganiska komponenter så finns det möjlighet att syntetisera helt nya hybrida organiska-oorganiska föreningar som kan ha nya eller förbättrade fysiska egenskaper.  Nuvarande hybrida organiska-oorganiska material som utgår från perovskitstrukturen använder huvudsakligen bly som divalent metalkatjon, och det beror på att den ger den bästa funktionella effekten. Blys toxicitet är dock en stor nackdel för nuvarande blybaserade hybrid oorganiska material. Möjligheten att ersätta bly med en annan divalent metall har undersökts under detta projekt. I denna avhandling så har den organiska katjonen cyclohexylammonium (CHA) varit i fokus som den organiska komponenten. Målet med detta examensarbete var att designa, syntetisera och karakterisera nytt hybrid organisk-oorganiskt material. De hybrida organiska-oorganiska föreningarna CHAZnBr3 och (CHA)2ZnBr4 syntetiserades för den första gången, så vitt författaren vet, och kommer vara i fokus i denna avhandling. De två nya hybrida organiska-oorganiska föreningarna blev strukturellt karakteriserade med X-ray Diffraction (XRD) och termiskt karakteriserade med Thermal Gravimetric Analysis (TGA) och Differential Scanning Calorimetry (DSC).  Den första föreningen, CHAZnBr3, kunde bestämmas att vara ortorombisk vid 298 K. Föreningen bestämdes vara termisk stabil upp till 490 K, och genomgår en fasövergång vid 445 K. Den andra föreningen, (CHA)2ZnBr4, kunde inte bestämmas strukturellt vid varken 100 K eller 298 K. Föreningen bestämdes vara termisk stabil upp till 490 K, och genomgår en fasövergång vid 230 K. Ytterligare karakterisering krävs för att bättre förstå egenskaperna hos dessa föreningar och deras möjliga användningsområden. / The demand for better and more sustainable material is increasing. More efficient materials will be needed to meet the growing global need. Hybrid organic-inorganic materials are one type of materials that have been of great interest recently, which can be described as a class of materials that mix organic and inorganic components. This thesis focused on hybrid organic-inorganic materials inspired by the classical perovskite crystal structure ABX3, where component A is an organic cation, component B is a divalent metal cation and component X is an anion. Hybrid organic-inorganic materials based on the classical perovskite structure may have various functional properties and may have a broad range of potential applications. Some examples of those properties as well as some and possible applications include good photoconductivity and power conversion efficiency for photovoltaic devices, excellent emission properties for light emitting diodes and tunable dielectric properties for electronic switches and sensors.  The physical properties of the hybrid organic-inorganic material are determined by the crystal structure of the material, which in turn will be decided by the choice of components. With the many possible choices for organic and inorganic components, there is an opportunity to synthesize completely new hybrid organic-inorganic compounds that may display new or superior physical properties. Current hybrid organic-inorganic materials based on the perovskite crystal structure mainly use lead as the divalent metal, since it currently gives the best performance. The toxicity of lead is a major drawback for current lead-based hybrid organic-inorganic materials. The possibility to replace lead with another divalent metal has been explored during this project. For this thesis, the organic cation cyclohexylammonium (CHA) has been of focus as the organic component. The aim of this thesis was to design, synthesize and characterize novel hybrid organic-inorganic compounds. The hybrid organic-inorganic compounds CHAZnBr3 and (CHA)2ZnBr4 were synthesized for the first time, to the best of our knowledge, and will be the focus of this thesis. The two new hybrid organic-inorganic compounds were structurally characterized by X-ray Diffraction (XRD) and thermally characterized by Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC).  The first compound, CHAZnBr3, could be determined to be orthorhombic at 298 K. The compound was found to be thermally stable up 490 K, and to undergo a phase transition at 445 K.  The second compound, (CHA)2ZnBr4, could not be fully structurally solved at either 100 K or 298 K. The compound was found to be thermally stable up to 490 K, and to undergo a phase transition at 230 K.  Further characterization will be needed to better understand the properties of these two compounds and their possible applications.

Page generated in 0.0886 seconds