• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A spectroscopic study of the role of the nitrate radical in the troposphere

Smith, Nicola January 1995 (has links)
No description available.
2

Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy

Jerez, Carlos J. 12 1900 (has links)
The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption.
3

The Synthesis and Characterization of Ferritin Bio Minerals for Photovoltaic, Nanobattery, and Bio-Nano Propellant Applications

Smith, Trevor Jamison 01 July 2015 (has links)
Material science is an interdisciplinary area of research, which in part, designs and characterizes new materials. Research is concerned with synthesis, structure, properties, and performance of materials. Discoveries in materials science have significant impact on future technologies, especially in nano-scale applications where the physical properties of nanomaterials are significantly different than their bulk counterparts. The work presented here discusses the use of ferritin, a hollow sphere-like biomolecule, which forms metal oxo-hydride nanoparticles inside its protein shell for uses as a bio-inorganic material.Ferritin is capable of forming and sequestering 8 nm metal-oxide nanoparticles within its 2 nm thick protein shell. A variety of metal-oxide nanoparticles have been synthesized inside ferritin. The work herein focuses on three distinct areas:1) Ferritin's light harvesting properties: namely band gaps. Discrepancies in the band gap energies for ferritin's native ferrihydrite mineral and non-native minerals have been previously reported. Through the use of optical absorption spectroscopy, I resolved the types of band gaps as well as the energy of these band gaps. I show that metal oxides in ferritin are indirect band gap semiconductors which also contain a direct transition. Modifications to the ferrihydrite mineral's band gaps are measured as a result of co-depositing anions into ferritin during iron loading. I demonstrate that these band gaps can be used to photocatalytically reduce gold ions in solution with titanium oxide nanoparticles in ferritin. 2) A new method for manganese mineral synthesis inside ferritin: Comproportionation between permanganate and Mn(II) forms new manganese oxide minerals inside ferritin that are different than traditional manganese oxide mineral synthesis. This reaction creates a MnO2, Mn2O3, or Mn3O4 mineral inside ferritin, depending on the synthesis conditions. 3) Ferritin as an energetic material: Ferritin is capable of sequestering various metals and anions into its interior. Perchlorate, an energetic anion, is sequestered through a co-deposition process during iron loading and is tested with energetic binding materials. Peroxide, which can be used as an oxidant, is also shown to be sequestered within apoferritin and combined with an aluminum based fuel for solid rocket propellants.
4

MAX-DOAS Measurements of Nitrogen Dioxide and Aerosol

Mendolia, Deanna 02 August 2012 (has links)
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) was applied to retrieve tropospheric NO2 and aerosol vertical profiles from downtown Toronto, and King City, Ontario during select periods in 2006 – 2010. Linear regression of MAX-DOAS NO2 vertical column density (VCD) versus OMI (satellite) VCD yielded a good correlation (R = 0.88) and MAX-DOAS negative bias of 20%, which was within the reported uncertainty of the MAX-DOAS and OMI VCD. The average regional Toronto VCD (remotely-sensed via MAX-DOAS and OMI) was half of the near-road VCD obtained in-situ (2.4 x 1016 ± 1.2 x 1016 molec/cm2). MAX-DOAS measurements of O4 were coupled with radiative transfer modeling to obtain vertical aerosol extinction profiles and aerosol optical depth (AOD). A strong linear agreement was observed between PM2.5 concentration and aerosol extinction coefficient (R = 0.92), and MAX-DOAS versus sun photometer AOD (slope = 0.94; R= 0.90).
5

MAX-DOAS Measurements of Nitrogen Dioxide and Aerosol

Mendolia, Deanna 02 August 2012 (has links)
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) was applied to retrieve tropospheric NO2 and aerosol vertical profiles from downtown Toronto, and King City, Ontario during select periods in 2006 – 2010. Linear regression of MAX-DOAS NO2 vertical column density (VCD) versus OMI (satellite) VCD yielded a good correlation (R = 0.88) and MAX-DOAS negative bias of 20%, which was within the reported uncertainty of the MAX-DOAS and OMI VCD. The average regional Toronto VCD (remotely-sensed via MAX-DOAS and OMI) was half of the near-road VCD obtained in-situ (2.4 x 1016 ± 1.2 x 1016 molec/cm2). MAX-DOAS measurements of O4 were coupled with radiative transfer modeling to obtain vertical aerosol extinction profiles and aerosol optical depth (AOD). A strong linear agreement was observed between PM2.5 concentration and aerosol extinction coefficient (R = 0.92), and MAX-DOAS versus sun photometer AOD (slope = 0.94; R= 0.90).
6

Light induced charge transfer processes and pyroelectric luminescence in Sn2P2S6

Rüdiger, Andreas 28 August 2006 (has links)
Sn2P2S6 is ferroelectric at room temperature. It is of technological interest in a variety of applications such as pyroelectric motion detectors and the photorefractive effect. Until now the defect structure and the light-induced charge transfer processes in this material have not been subject of a detailed investigation. The main part of this thesis describes and interprets data of electron paramagnetic resonance (EPR), optical absorption spectroscopy and their combination at 10 K to unravel the light-induced sensitization and charge transfer paths. In the photosensitized crystal at excitation with 1.5 eV a hole is transferred from a previously generated Sn3(plus) site to another inequivalent site of the ferroelectric phase. For higher excitation energies another hole present as Fe3(plus) is transferred to S2- creating S-. Optical absorption spectroscopy at room temperature indicates the validity of this model for evelated temperature below the Curie-temperature as well. It is consistent with both our interpretation of EPR spectra and the observation of photoinduced persistent conductivity that electronic bipolarons are the negative charge carriers. An additional chapter interprets a manifestation of pyroelectric luminescence already reported in other pyroelectric materials in terms of an internal Poole-Frenkel-effect induced by the pyroelectric field under changing temperature. The numerical simulation based on published material parameters is in good agreement with the experimental data for both heating and cooling.
7

Desenvolvimento de um espectrômetro por absorção diferencial para medidas de poluentes na atmosfera / Development of a spectrometer using the differential optical absorption spectroscopy for measures of pollutants in the atmosphere

Souza, Paulo Cesar de 05 September 2007 (has links)
Este trabalho apresenta os resultados da construção de um espectrômetro utilizando a espectroscopia ótica por absorção diferencial (DOAS) para determinação de poluentes na atmosfera. A determinação e a quantificação de gases-traço contaminantes na atmosfera são possíveis pelo registro da transmitância, e posterior avaliação das estruturas de absorção características de cada espécie, em um caminho ótico aberto conhecido na atmosfera. As partes óticas e eletrônicas foram caracterizadas e o software de comando e processamento espectral foi desenvolvido. O sistema construído foi testado em laboratório e medidas de emissões veiculares de quatro automóveis foram realizadas. Os resultados das emissões veiculares apresentaram uma sensível diferença entre os veículos no regime de operação (motor frio e quente) por um fator que varia entre 5 e 8. / This work presents the results of the construction of a spectrometer using the differential optical absorption spectroscopy (DOAS) for determination of pollutants in the atmosphere. The determination and quantification of trace gas contaminations in atmosphere is possible by recording and later evaluation of characteristic absorption structures in a known path length in open atmosphere. The parts optics and electronic had been characterized and the software of command and spectral processing was developed. The system was built and tested in laboratory and vehicle emissions measures of four cars were performed. The results in vehicle emissions showed a noticeable difference between vehicles in the system of operation (hot and cold engine) by a factor ranging between 5 and 8.
8

Desenvolvimento de um espectrômetro por absorção diferencial para medidas de poluentes na atmosfera / Development of a spectrometer using the differential optical absorption spectroscopy for measures of pollutants in the atmosphere

Paulo Cesar de Souza 05 September 2007 (has links)
Este trabalho apresenta os resultados da construção de um espectrômetro utilizando a espectroscopia ótica por absorção diferencial (DOAS) para determinação de poluentes na atmosfera. A determinação e a quantificação de gases-traço contaminantes na atmosfera são possíveis pelo registro da transmitância, e posterior avaliação das estruturas de absorção características de cada espécie, em um caminho ótico aberto conhecido na atmosfera. As partes óticas e eletrônicas foram caracterizadas e o software de comando e processamento espectral foi desenvolvido. O sistema construído foi testado em laboratório e medidas de emissões veiculares de quatro automóveis foram realizadas. Os resultados das emissões veiculares apresentaram uma sensível diferença entre os veículos no regime de operação (motor frio e quente) por um fator que varia entre 5 e 8. / This work presents the results of the construction of a spectrometer using the differential optical absorption spectroscopy (DOAS) for determination of pollutants in the atmosphere. The determination and quantification of trace gas contaminations in atmosphere is possible by recording and later evaluation of characteristic absorption structures in a known path length in open atmosphere. The parts optics and electronic had been characterized and the software of command and spectral processing was developed. The system was built and tested in laboratory and vehicle emissions measures of four cars were performed. The results in vehicle emissions showed a noticeable difference between vehicles in the system of operation (hot and cold engine) by a factor ranging between 5 and 8.
9

Molecular Doping of Organic Semiconductors – Contributions to Its Basic Understanding and Application

Wegner, Berthold 25 March 2019 (has links)
Dotierung ist ein technologisches Schlüsselverfahren zur Kontrolle der Ladungsträgerdichte und der Position des Fermi-Levels in Halbleitern. Für organische Halbleiter hat sich die Verwendung von starken molekularen Elektronenakzeptoren und -donatoren als p- bzw. n-Dotanten als zuverlässigster Ansatz erwiesen. In der vorliegenden Arbeit wird eine Reihe von Themen im Zusammenhang mit der molekularen Dotierung von organischen Halbleitern untersucht. Zuerst wird die Eignung zweier verschiedener Materialparameter zur Vorhersage der Ionenpaarbildung bei der molekularen Dotierung überprüft: i) Redox-Potentiale, gemessen durch Cyclovoltammetrie (CV), und ii) Ionisationsenergie (IE) / Elektronenaffinität (EA), gemessen mittels (inverser) Photoelektronenspektroskopie (PES/IPES). Optische Absorptionsmessungen zeigen, dass Redox-Potentiale besser geeignet sind passende Materialpaare zu identifizieren als IE/EA-Werte. Zweitens wird die n-Dotierung eines prototypischen, p-artigen Co-Polymers durch metallorganische Dimere erforscht. Eine Kombination von PES/IPES, optischen Absorptions- und Leitfähigkeitsmessungen zeigt, dass das p-Polymer durch Dotierung zu einem n-Polymer transformiert werden kann. Drittens wird die p-Dotierung des Polymers P3HT durch ein bor-basiertes organisches Salz analysiert. Ein multi-experimenteller Ansatz zeigt die Bildung von Polaronen bei niedrigen und von Bipolaronen bei hohen Dotanten-Konzentrationen von über zehn Prozent. Zuletzt wird die Modifikation von elektronenselektiven Kontakten in organisch-anorganischen Metallhalogenid-Perowskit-Solarzellen (PSCs) untersucht, um Elektronensammel-Verluste zu minimieren. Hierzu wird eine Zwischenschicht aus metallorganischen Dimeren zwischen Elektrode und org. Elektronentransportschicht (ETL) eingebracht, um einen ohmschen Kontakt herzustellen. PSCs, die aus derart modifizierten elektronenselektiven Kontakte bestehen, weisen erhöhte Wirkungsgrade auf. / Doping is a key technological procedure to control the charge carrier density and Fermi level position in semiconductors. For organic semiconductors, the use of strong molecular electron acceptors and donors as p-type and n-type dopants, respectively, has emerged as the most reliable approach. In the present thesis, a variety of topics related to the molecular doping of organic semiconductors will be investigated. First, the suitability of two different material parameters to predict ion pair formation in molecular doping is explored: i) redox-potentials measured by cyclic voltammetry (CV) and ii) ionization energy (IE) / electron affinity (EA) measured by (inverse) photoelectron spectroscopy (PES/IPES). Optical absorption spectroscopy measurements reveal redox-potentials to be better suited to identify matching material pairs than IE/EA values. Secondly, the n-type doping of a prototypical p-type co-polymer by an organometallic dimer is studied. Combined PES/IPES, optical absorption and conductivity measurements show that the p type polymer can be rendered n-type upon doping. Thirdly, the p-type doping of the polymer P3HT by a boron based organic salt is investigated. A multi-experimental approach shows the formation of polarons at low and bipolarons at high dopant concentrations above ten percent. Finally, the modification of electron-selective contacts in organic-inorganic metal halide perovskite solar cells (PSCs) is studied in order to minimize electron collection losses. Here, an interlayer of organometallic dimers is introduced between electrode and organic electron transport layer in order to form an Ohmic contact. PSCs employing such modified electron-selective contacts show increased power conversion efficiencies.

Page generated in 0.1347 seconds