• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactive Design Interfaces to support Ideation & Rapid Prototyping

Devashri Utpal Vagholkar (11816888) 19 December 2021 (has links)
Generating ideas and creating prototypes of physical products is a highly non-linear and iterative process. Current tools divide this process into multiple discrete steps with different tools to support each of these steps such as CAD modelling, simulation and fabrication. We believe, design interfaces that combine different steps of the process and create different layers of abstraction depending on the type of the user and where they are in the process can support users in generating more creative ideas and creating better functioning prototypes more efficiently. In order to validate this, we developed three interfaces- a sketch-based ideation tool, a live programming interface to create IoT devices and a design tool to support design and fabrication of hand wearables. The foundation of these design interfaces is the layer of abstraction that allows users to focus on idea generation and converting it into a tangible prototype with little or no technical knowledge, and a continuous visual feedback that guides the user to make necessary changes to improve their design. The three tools were evaluated through user testing for supporting creation of different ideas and converting them into functional prototypes.
2

PRODUCT-APPLICATION FIT, CONCEPTUALIZATION, AND DESIGN OF TECHNOLOGIES: PROSTHETIC HAND TO MULTI-CORE VAPOR CHAMBERS

Soumya Bandyopadhyay (13171827) 29 July 2022 (has links)
<p>From idea generation to conceptualization and development of products and technologies is a non-linear and iterative process. The work in this thesis follows a process that initiates with the review of existing technologies and products, examining their unique value proposition in the context of the specific applications for which they are designed. Next, the unmet needs of novel or emerging applications are identified that require new product or technologies. Once these user needs and product requirements are identified, the specific functions to be addressed by the product are specified. The subsequent process of design of products and technologies to meet these functions is enabled by engineering tools such as three-dimensional modelling, physics-based simulations, and manufacturing of a minimum viable prototype. In these steps, un-biased decisions have to be taken using weighted decision matrices to cater to the design requirements. Finally, the minimum viable prototype is tested to demonstrate the principal functionalities. The results obtained from the testing process identify the potential future improvements in the next generations of the prototype that would subsequently inform the final design of product. This thesis adopted this methodology to initiate the design two product-prototypes: i) an image-recognition-integrated service (IRIS) robotic hand for children and ii) cascaded multi-core vapor chamber (CMVC) for improving performance of next-generation computing systems. Minimum viable product-prototypes were manufactured to demonstrate the principal functionalities, followed by clear identification of future potential improvements. Tests of the prosthetic hand indicate that the image-recognition based feedback can successfully drive the actuators to perform the intended grasping motions. Experimental testing with the multi-core vapor chamber demonstrates successful performance of the prototype, which offers notable reduction in temperatures relative to the existing benchmark solid copper spreader. </p>

Page generated in 0.0749 seconds