• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 40
  • 15
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 186
  • 186
  • 102
  • 54
  • 46
  • 23
  • 23
  • 23
  • 19
  • 18
  • 15
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

La cécidomyie orange du blé, Sitodiplosis mosellana (Géhin): appréhension des risques et gestion intégrée / Orange wheat blossom midge, Sitodiplosis mosellana (Géhin): risk evaluation and pest management

Jacquemin, Guillaume 03 April 2014 (has links)
La cécidomyie orange du blé, Sitodiplosis mosellana (Géhin), est un ravageur commun du froment. Présente sur les trois continents de l’hémisphère Nord, cette espèce est connue depuis deux siècles mais son contrôle reste difficile tant par sa présence discrète que par ses effectifs hautement variables. En Wallonie, les niveaux d’infestations sont globalement faibles mais atteignent localement des seuils inquiétants.<p>Au début des années 2000, la phéromone sexuelle de S. mosellana a été identifiée au Canada. Cette découverte a permis la fabrication de pièges qui ont considérablement amélioré la détection et la mesure des vols de cet insecte minuscule. De 2007 à 2010, les captures de S. mosellana ont été mesurées quotidiennement dans plusieurs dizaines de champs de Wallonie, aux historiques et aux couverts variés.<p>Les volumes de captures au piège à phéromone sexuelle ont été très importants. Il a fallu en étudier la signification, notamment en termes de mesure du risque. En effet, si les mâles sont efficacement capturés, seules les femelles constituent un risque de dégâts. L’interprétation correcte des captures à l’aide de ce type de piège, a été rendue possible par l’observation de différences fondamentales concernant la mobilité et la distribution spatiale des mâles et des femelles de S. mosellana. Même s’ils ne mesurent pas directement l’émergence proprement dite, les pièges à phéromone ont permis, grâce à leur très grande sensibilité, de préciser les connaissances sur l’émergence des adultes et de révéler que plusieurs vagues d’émergence pouvaient se succéder au cours d’une même année.<p>La prévision des émergences de la cécidomyie orange du blé, constitue la clé de voûte de la lutte contre ce ravageur dont un contrôle efficace par des insecticides ne se justifie éventuellement que lorsque la courte saison des pontes coïncide avec l’épiaison des froments. Les patrons d’émergence obtenus par les pièges ont été confrontés aux prévisions de différents modèles conçus en Europe ou en Amérique du Nord, et appliqués aux conditions météorologiques observées de 2007 à 2010. Aucun de ces modèles n’a prévu correctement les émergences sur l’ensemble des quatre années.<p>Les données d’émergence obtenues à l’aide des pièges à phéromone (effectifs élevés et relevés quotidiens) ont fait apparaître une relation de cause à effet entre, d’une part les vagues d’émergences et, d’autre part les épisodes pluvieux observés trois à six semaines plus tôt. L’écart entre une &61618;pluie inductrice&61618; et la vague d’émergence induite correspondante s’est avéré constant en termes d’accumulation de température :il équivaut à 160 degrés-jours en base 7°C. Partant de ce constat et des acquis des modèles antérieurs, un modèle prévisionnel original des émergences a été développé et validé sur le terrain. Allié à une meilleure connaissance de la biologie du ravageur, il constitue un outil majeur de la lutte intégrée.<p>Par ailleurs, les travaux menés ont également révélé l’existence d’un biais fréquent dans les essais d’évaluation des variétés, entraîné par la concentration des pontes de cécidomyie orange sur les premières parcelles atteignant le stade épiaison. Dans le système d’évaluation en vigueur, notamment pour l’inscription dans les catalogues nationaux, ce biais conduit à une sous-estimation du potentiel de rendement des variétés de blé les plus précoces.<p>Enfin, la découverte du rôle inducteur des pluies sur l’émergence des adultes a été exploitée en conditions contrôlées pour planifier des émergences échelonnées, et pour disposer, pendant une longue période, de jeunes adultes prêts à pondre. Cette application permet dès à présent de mesurer en serre le niveau de résistance des variétés exposées de façon homogène à l’insecte, quel que soit leur degré de précocité.<p>De diverses façons, cette étude contribue à une meilleure connaissance de la cécidomyie orange du blé et offre de nouveaux outils pour la lutte intégrée contre ce ravageur.<p><p>--------------------------------------------------<p><p>The orange wheat blossom midge, Sitodiplosis mosellana (Géhin), a common pest of wheat throughout the northern hemisphere, is known for two centuries but remains difficult to control due to its discrete behavior and its highly variable population level.<p>In general, the infestation levels in Wallonia (Belgium) are low, although levels could locally exceed worrying thresholds. <p>In the early 2000s, the sexual pheromone of S. mosellana has been identified in Canada. This discovery has led to the manufacturing of traps which have greatly improved the detection of this tiny insect. From 2007 to 2010 in Wallonia, S. mosellana captures have been daily registered in about 20 fields with different cropping histories and grown with different crops.<p>Insect captures by pheromone traps were numerous. Relation between amount of captures and risk measurement has been studied. As expected, only the males are attracted by the pheromone and the risk of ears infestation is mainly related to the presence of females. The correct interpretation of captures in pheromone traps has been established by the observation of fundamental differences between males and females concerning their mobility and their spatial distribution. <p>Despite the fact that pheromone traps are not real emergence traps, they have led to new information on adult emergence indicating that several emergence waves can be consecutive during the same year. <p>Forecasting the emergence of the adult orange wheat blossom midge is a key element on pest management. Insecticides treatments are sometimes justified when the egg laying period of the insect coincides with ear emergence of wheat. Emergence patterns established from captures of pheromone traps have been compared with the forecast of several models built in Europe or North America. These forecasting models were used with the meteorological data observed from 2007 until 2010. None of the six tested models provided a reliable forecast across the four years of our study. <p>Emergence data from catches in pheromone traps were very accurate because the number of catches were high and were taken each day. This emergence data showed a relation between emergence waves and rainfalls occurring during the preceding 3 to 6 weeks. The lag between inductive rain and emergence wave is constant in terms of temperature accumulation: it is equivalent to 160 degree–days above 7°C. This discovery, combined with experience from previous models, was incorporated into a new forecasting model.<p>In addition, the present work has also revealed the existence of a common bias in variety evaluation trials leading sometime to the concentration of the eggs in the earliest earing variety. In the current evaluation system, this bias leads to a sub-evaluation of the yield for the most precocious varieties. <p>Finally, the discovery of the inductive rain for adult emergence has been used in the screening for resistant varieties to S. mosellana by providing adults during the complete duration of the test. This application of the model allows to measure, under controlled conditions, the level of resistance of all varieties (early and late heading varieties) which are exposed homogeneously to the insect.<p>In total, this study has contributed to a better understanding of the orange wheat blossom midge and provides some new tools in the management of this pest.<p> / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
182

Entomopathogenic fungi for control of soil-borne life stages of false codling moth, Thaumatotibia leucotreta (Meyrick) (1912) (Lepidoptera: Tortricidae)

Coombes, Candice Anne January 2013 (has links)
False codling moth (FCM), Thaumatotibia leucotreta is an extremely important pest of citrus in South Africa and with the shift away from the use of chemicals, alternate control options are needed. One avenue of control which has only recently been investigated against the soil-borne life stages of FCM is the use of entomopathogenic fungi (EPF). In 2009, 12 entomopathogenic fungal isolates collected from South African citrus orchards showed good control potential during laboratory conducted bioassays. The aim of this study was to further analyse the potential of these isolates through concentration-dose and exposure-time response bioassays. After initial re-screening, concentration-dose response and exposure-time response sandconidial bioassays, three isolates were identified as exhibiting the greatest control potential against FCM in soil, Metarhizium anisopliae var. anisopliae (G 11 3 L6 and FCM Ar 23 B3) and Beauveria bassiana (G Ar 17 B3). Percentage mycosis was found to be directly related to fungal concentration as well as the amount of time FCM 5th instar larvae were exposed to the fungal conidia. LC50 values for the three isolates were not greater than 1.92 x 10⁶ conidia.ml⁻ₑ and at the LC₅₀, FCM 5th instar larvae would need to be exposed to the fungus for a maximum of 13 days to ensure a high mortality level. These isolates along with two commercially available EPF products were subjected to field persistence trials whereby net bags filled with a mixture of autoclaved sand and formulated fungal product were buried in an Eastern Cape citrus orchard. The viability of each isolate was measured on a monthly basis for a period of six months. All isolates were capable of persisting in the soil for six months with the collected isolates persisting far better than the commercially used isolates. Two of the isolates, G 11 3 L6 and G Ar 17 B3, were subjected to small scale laboratory application trials. Two formulations were investigated at two concentrations. For each isolate, each formulation and each concentration, FCM 5th instar larvae were applied and allowed to burrow into the soil to pupate before fungal application or after fungal application. Contact between fungi and FCM host is essential as, in contrast to pre-larval treatments, percentage mortality in post-larval treatments was low for both formulations and both isolates. For isolate G Ar 17 B3, a conidial suspension applied as a spray at a concentration of 1 x 10⁷ conidia.ml⁻ₑ obtained the highest percentage mortality (80 %). For isolate G 11 3 L6 however, both formulations performed equally well at a high, 1 x10⁷ conidia.ml⁻ₑ concentration (conidial suspension: 60 %; granular: 65 %) The results obtained thus far are promising for the control of FCM in citrus, but if these EPFs are to successfully integrate into current FCM control practices more research, some of which is discussed, is essential
183

Investigation of entomopathogenic fungi for control of false codling moth, Thaumatotibia leucotrata, Mediterranean fruit fly, Ceratitis capitata and Natal fruit fly, C. rosa in South African citrus

Goble, Tarryn Anne January 2010 (has links)
The biology of key citrus pests Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Ceratitis rosa Karsch (Diptera: Tephritidae) includes their dropping from host plants to pupate in the soil below citrus trees. Since most EP fungi are soil-borne microorganisms, the development and formulation of alternative control strategies using these fungi as subterranean control agents, targeted at larvae and pupae in the soil, can potentially benefit existing IPM management of citrus in South Africa. Thus, a survey of occurrence of entomopathogenic fungi was undertaken on soils from citrus orchards and natural vegetation (refugia) on conventionally and organically managed farms in the Eastern Cape Province in South Africa. A method for baiting soil samples with citrus pest T. leucotreta and C. capitata larvae, as well as with the standard bait insect, Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), was implemented. Sixty-two potentially useful entomopathogenic fungal isolates belonging to four genera were collected from 288 soil samples, an occurrence frequency of 21.53%. The most frequently isolated entomopathogenic fungal species was Beauveria bassiana (Balsamo) Vuillemin (15.63%), followed by Metarhizium anisopliae var. anisopliae (Metschnikoff) Sorokin (3.82%). Galleria mellonella was the most effective insect used to isolate fungal species (χ2=40.13, df=2, P≤ 0.005), with a total of 45 isolates obtained, followed by C. capitata with 11 isolates, and T. leucotreta with six isolates recovered. There was a significantly (χ2=11.65, df=1, P≤ 0.005) higher occurrence of entomopathogenic fungi in soil samples taken from refugia compared to cultivated orchards of both organically and conventionally managed farms. No significant differences were observed in the recovery of fungal isolates when soil samples from both farming systems were compared. The physiological effects and host range of 21 indigenous fungal isolates obtained in the Eastern Cape were investigated in the laboratory to establish whether these isolates could be effectively used as biological control agents against the subterranean life stages of C. rosa, C. capitata and T. leucotreta. When these pests were treated with a fungal concentration of 1 x 10⁷ conidia ml⁻¹, the percentage of T. leucotreta adults which emerged in fungal treated sand ranged from 5 to 60% (F=33.295; df=21; P=0.0001) depending on fungal isolate and the percentage of pupae with visible signs of mycosis ranged from 21 to 93% (F= 96.436; df=21; P=0.0001). Based on fungal isolates, the percentage adult survival in C. rosa and C. capitata ranged from 30 to 90% and 55 to 86% respectively. The percentage of C. rosa and C. capitata puparia with visible signs of mycosis ranged from 1 to 14% and 1 to 11% respectively. Deferred mortality due to mycosis in C. rosa and C. capitata adult flies ranged from 1 to 58% and 1 to 33% respectively, depending on fungal isolate. Entomopathogenic fungal isolates had a significantly greater effect on the adults of C. rosa and C. capitata than they did on the puparia of these two fruit fly species. Further, C. rosa and C. capitata did not differ significantly in their response to entomopathogenic fungi when adult survival or adult and pupal mycosis were considered. The relative potency of the four most virulent Beauveria isolates as well as the commercially available Beauveria bassiana product, Bb Plus® (Biological Control Products, South Africa), were compared against one another as log-probit regressions of mortality against C. rosa, C. capitata and T. leucotreta which all exhibited a dose-dependent response. Against fruit flies the estimated LC50 values of all five Beauveria isolates ranged from 5.5 x 10¹¹ to 2.8 x 10¹² conidia/ml⁻¹. There were no significant differences between the relative potencies of these five fungal isolates. When T. leucotreta was considered, isolates: G Moss R10 and G 14 2 B5 and Bb Plus® were significantly more pathogenic than G B Ar 23 B3 and FCM 10 13 L1. The estimated LC₅₀ values of the three most pathogenic isolates ranged from 6.8 x 10⁵ to 2.1 x 10⁶ conidia/ml⁻¹, while those of the least pathogenic ranged from 1.6 x 10⁷ to 3.7 x 10⁷ conidia/ml⁻¹. Thaumatotibia leucotreta final instar larvae were exposed to two conidial concentrations, at four different exposure times (12, 48, 72 and 96 hrs) and showed an exposure time-dependant relationship (F=5.43; df=3; P=0.001). At 1 x 10⁷conidia/ml⁻¹ two Beauveria isolates: G Moss R10 and G 14 2 B5 were able to elicit a response in 50% of test insects at 72 hrs (3 days) exposure. Although a limited amount of mycosis was observed in the puparia of both fruit fly species, deferred adult mortality due to mycosis was high. The increased incidence of adult mortality suggests that post emergence mycosis in adult fruit flies may play a more significant role in field suppression than the control of fruit flies at the pupal stage. The increased incidence of pupal mortality, as well as the relatively low concentrations of conidia required to elicit meaningful responses in T. leucotreta pupae may suggest that pre-emergent control of false codling moth will play a more significant role in field suppression than the control of adult life stages using indigenous isolates of entomopathogenic fungi. Various entomopathogenic fungal application techniques targeted at key insect pests within integrated pest management (IPM) systems of citrus are discussed.
184

Biological control of the two-spotted spider mite, Tetranychus urticae Koch (Acari : tetranychidae).

Gatarayiha, Mutimura Celestin. January 2009 (has links)
The two-spotted spider mite (TSM), Tetranychus urticae Koch, is an important pest of many greenhouse and field crops worldwide. The development of resistance in TSM populations to chemical acaricides, allied with public health concerns about pesticide residues, has motivated the search for alternative control measures to suppress the pest. Hyphomycetous fungi are promising agents for mite control and the fungus Beauveria bassiana (Bb) (Balsamo) Vuillemin was investigated in this study as a biocontrol agent. The principal objectives of this study comprised: a) screening Bb strains for their pathogenicity against T. urticae; b) testing the effect of adjuvants on the efficacy of Bb; c) studying the effect of plant type on persistence of Bb and the efficacy of control of Bb against T. urticae; d) evaluating the field efficacy of Bb applications against T. urticae; e) testing the compatibility of Bb with selected fungicides; and f) assessing the synergy between Bb and soluble silicon for T. urticae control. Screening bioassays of sixty-two strains of Bb identified the two most effective strains, PPRI 7315 (R289) and PPRI 7861 (R444), that caused mortality levels of more than 80% of adult mites at 9 d post-inoculation with 2 × 108 conidia ml-1. These strains performed significantly better than the Bb commercial strain PPRI 5339, in laboratory bioassays. The two strains also attacked mite eggs, causing 53.4% and 55.5% reduction in egg hatchability at 2 × 108 conidia ml-1 respectively. However, PPRI 7861 showed relatively higher production of conidia in culture and was, therefore, selected for further trials under greenhouse and field conditions. Greenhouse evaluations of the effects of two adjuvants (Break-thru® and a paraffin oil-based emulsion) on efficacy of Bb demonstrated a higher efficacy of the biocontrol agent (BCA) when it was applied with Break-thru® or the oil solution than with water alone. Moreover, Bb conidia applied in Break-thru® solution resulted in greater control of TSM than conidia applied in the mineral oil. There was also a dose-response effect and the control of TSM by Bb increased when the concentration of conidia was increased. The control of TSM by Bb in beans (Phaseolus vulgaris L), cucumber (Cucumis sativus L.), eggplant (Solanum melongena L.), maize (Zea mays L.) and tomato (Solanum lycopersicum L.) was tested in greenhouse trials. On these crops, the persistence of conidia declined over time. The rate of decline was significantly higher on maize. However, TSM mortality was positively correlated with the amount of conidia deposited on leaves immediately after spraying, rather than their persistence over time. Higher levels of mortality of TSM due to Bb application were observed on beans, cucumber and eggplants, suggesting that the type of crop must be taken into consideration when Bb is applied as a BCA. Field efficacy of Bb against mites was evaluated in two trials on eggplants. Based on assessment of population densities of mites and leaf damage assessments; both trials showed that the strain PPRI 7861 controlled TSM in the field. Two commonly used fungicides, azoxystrobin and flutriafol, were investigated in vitro tests on culture medium and laboratory bioassays on detached bean leaves (Phaseolus vulgaris L.) for their effects on Bb. Azoxystrobin (a strobilurin) was less harmful to Bb while flutriafol was found to be inhibitory. Another important finding of this study was the substantial enhancement of Bb efficacy by soluble silicon. When Bb was combined with soluble Si, the control of TSM was better than when either of the two products was applied alone. Moreover, application of soluble Si as a plant fertilizer in hydroponic water nutrient increased accumulation of peroxidase, polyphenoloxidase and phenylalanine ammonia-lyase enzymes in leaves of plants infested with TSM. Increased activity of these defense enzymes in leaves deters feeding behaviour of mites. We suggested that feeding stress renders them susceptible to Bb infection, which would explain the synergy observed between the two agents. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
185

Development of fungal biological control of four agriculturally important pests, Sitophilus oryzae, Trialeurodes vaporariorum, Planococcus ficus and Eldana saccharina, in South Africa.

Chambers, Craig Brian. January 2005 (has links)
The use of entomopathogenic fungi to control agriculturally important pests, both in greenhouses and in the field, has been demonstrated by various authors for a number of years. This has been brought about by the development of resistance in certain pest species to chemical applications and a growing public awareness of the safety implications of residual insecticides. Several entomopathogenic fungi were tested against four insect pests found in the Republic of South Africa (RSA), the greenhouse whitefly, Trialeurodes vaporariorum, the rice weevil, Sitophilus oryzae, the grapevine mealybug, Planococcusficus and the sugarcane stem borer, Eldana saccharina. Further concentration, temperature and humidity studies were conducted with selected isolates on the rice weevil, S. oryzae. Sitophilus oryzae is considered one ofthe most important pests of stored grain. Several fungal isolates were tested against the rice weevil, four of which, B1, PPRI 6690, PPRI 6864 and PPRI 7067, were selected for further testing based on the mortality results over a 21 d period. Varying conidial concentrations were applied and at high doses of 1x10 -6 conidia ml -1 with mortality rates of to 84% achieved. LT 50 values ranged from 6 - 68d. Increased spore concentration resulted in an increase in overall mortality. Temperature and humidity was found to affect the infection potential of the four isolates tested. Four temperatures ranging from 15 - 30°C were tested. The highest mortality rates were obtained at 25°C where mortality ranged from 46 - 65% in 14d. Mortality rates decreased with decreasing temperature, and no mortality was recorded at 30°C. Temperature was found to significantly alter the LT 50 values, increasing the LT 50 with decreasing temperatures. Decreasing the humidity resulted in an increased LT 50 and a reduction in the overall mortality rates. The mortality of S. oryzae ranged according to the RH and isolate. Isolates Bland PPRI 6690 resulted in the highest mortalities of 80 and 83% at 92.5% RH, with LT 50's of 6.3d and 6.4d, respectively. Several entomopathogenic fungi were tested against T vaporariorum, P. ficus and E. saccharina, three key pests of South African crops. Nine fungal isolates were tested against the greenhouse whitefly, T vaporariorum, with mortalities ranging from 26.7 - 74.7% over 14d. Beauveria bassiana Isolates Bl and PPRl 6690 produced the highest mortality rates and were recommended for further pathogenicity testing against T. vaporariorum. Planococcus ficus is a common pest ofvineyards in the Western Cape Province, South Africa. Nine entomopathogenic fungi were screened against P.ficus, only two of which produced mortality. Eldana saccharina is a stalk borer, which infests sugarcane in large areas of Southern Africa. Five isolates were tested against second and third instar larvae, three of which, B1, PPRl 6864 and PPRl 6690 resulted in mortalities. Mean percentage mortality was low for all three isolates. From the study it was evident that two of the isolates tested, Bland PPRI 6690 (B. bassiana), showed potential against three of the four pests, and two isolates of Lecanicillium lecanii caused mortality in P. ficus. Further research and understanding of the effect of environmental conditions, spore concentration and epizootic potential would result in the further development of these isolates as future biological control agents. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
186

Impact des plantes Bt sur la biologie de Plodia interpunctella: évaluation de l'efficacité de la stratégie agricole "Haute dose - refuge" pour la gestion de la résistance des insectes ravageurs aux plantes Bt / Impact of the Bt plants on the biology of Plodia interpunctella: effectiveness of the "High Dose - Refuge" strategy for managing pest resistance to Bt plants

Gryspeirt, Aiko 17 January 2008 (has links)
Commercialisées depuis 1996, les plantes génétiquement modifiées produisant une toxine insecticide (toxine Cry) dérivée de Bacillus thuringiensis et appelées plantes Bt ciblent certains Lépidoptères ou Coléoptères ravageurs. Au fil des ans, les surfaces cultivées en plantes Bt sont de plus en plus importantes et contrôlent de larges populations d'insectes. Pour limiter le risque de développement de populations résistantes, une stratégie agricole appelée 'Haute Dose / Zone Refuge' est actuellement recommandée aux Etats-Unis par l'Environmental Protection Agency. Cette stratégie préventive nécessite la plantation d'une 'zone refuge' composée de plantes non-Bt utilisables par le ravageur ciblé et plantée à proximité de la 'zone Bt' qui synthétise une haute dose de toxine Cry. <p><p>Mon projet de recherche s’inscrit dans le cadre de l’évaluation de l'efficacité de cette stratégie et s’articule en deux phases :une phase expérimentale et une phase théorique. La première se concentre sur la caractérisation en laboratoire de l'impact des toxines Cry sur la biologie d'un ravageur. Cette phase constitue un support au volet théorique :la mise au point d’un modèle mathématique évaluant l'efficacité de la stratégie HD/R. L'originalité de ce projet repose entre autre sur l'interactivité entre ces deux volets.<p><p>Volet expérimental. Impact des toxines Cry sur la biologie de Plodia interpunctella. Nous évaluons séparément l'impact d'une gamme de concentrations de deux toxines Cry (CryXX et CryYY) sur une série de paramètres comportementaux et biologiques d'un insecte commun des denrées stockées: Plodia interpunctella (Hübner) (Lepidoptera :Pyralidae). Ces paramètres sont sélectionnés car leur variation pourrait avoir un impact sur l'efficacité de la stratégie HD/R dans le contrôle de la résistance. Il est donc pertinent de les quantifier pour intégrer dans le modèle des ordres de grandeur réalistes et générer des résultats qui ne sont pas uniquement basés sur des spéculations théoriques.<p><p>Volet théorique A. Efficacité de la stratégie HD/R pour des plantes Bt synthétisant une ou deux toxines simultanément. La stratégie 'HD/R' a été développée pour prévenir la résistance envers les plantes Bt synthétisant une seule toxine. Or, depuis 2003, de nouvelles variétés de coton Bt synthétisant simultanément deux toxines Cry sont commercialisées (BollgardII® et WidestrikeTM). Nous évaluons, grâce au modèle que nous avons développé, l'efficacité de cette stratégie lors d'une utilisation exclusive de plantes Bt synthétisant une ou deux toxines.<p><p>Volet théorique B. Impact du ralentissement du développement des insectes sur les plantes Bt sur l'efficacité de la stratégie HD/R. Le volet expérimental met en évidence un allongement de la durée du développement des larves se nourrissant sur une diète contaminée en toxine Cry. Ce ralentissement induit une séparation temporelle entre l'émergence des adultes de la zone Bt et de la zone refuge et perturbe une hypothèse principale de la stratégie HD/R: le croisement aléatoire entre adultes, indépendamment du génotype et de la zone d'origine. Dans ce troisième chapitre, nous étudions l'impact de la perturbation du croisement aléatoire sur l'efficacité de la stratégie HD/R. Nous testons également deux options pour optimiser la stratégie en cas d'asynchronie: l'utilisation de plantes Bt synthétisant une faible concentration en toxine (atténuant le décalage entre l'émergence des adultes) ou l'augmentation de la taille de la zone refuge (favorisant la survie des individus porteurs d'allèle de sensibilité et donc optimisant la dilution de la résistance à la génération suivante). <p><p>Ce travail s'intègre dans une problématique actuelle et utilise des outils de biologie théorique (théories de la dynamique et de la génétique des populations) ainsi que le développement d'un modèle mathématique. Il apporte des éléments de réponse et de réflexion sur l'optimisation de la gestion de la résistance des insectes mais c'est aussi une illustration de la complémentarité entre la biologie expérimentale et théorique.<p><p><p>/<p><p>On the market since 1996, genetically modified plants synthesizing an insecticidal toxin (Cry toxin) stemmed from Bacillus thuringiensis, called Bt plants, target several insect pests (Lepidoptera or Coleoptera). Bt crops cover increasingly larger areas and control important pest populations The Insect Resistance Management Strategy (IRM) strategy currently recommended in the U.S.A. to limit the development of resistant populations is the High Dose / Refuge zone (HD/R) strategy. This pre-emptive strategy requires a refuge zone composed by non-Bt plants, usable by the target insect and in close proximity of the Bt zone synthesizing a high toxin concentration.<p><p>My research project contributes to the effectiveness assessment of this HD/R strategy. It is structured on two main parts: an experimental, and a theoretical section. The first part characterizes the impact of Cry toxins on the biology of an insect pest. It is the basis of the theoretical part: the implementation of a mathematical model, which evaluates the effectiveness of the HD/R strategy.<p>The originality of this project is based on the interactivity of these two components.<p><p>Experimental section. Impact of the Cry toxins on the biology of Plodia interpunctella. We assess the impact of a range of concentrations of two Cry toxins (CryXX et CryYY) on several behavioural and biological parameters of a common pest of stored products: Plodia interpunctella (Hübner) (Lepidoptera :Pyralidae). These parameters are selected because their variation could influence the effectiveness of a HD/R strategy. So, it is important to quantify these parameters so that realistic values can be integrated in our model. The results of the model are thus not based on theoretical assumptions alone.<p> <p>Theoretical section A. Effectiveness of a HD/R strategy with Bt plants synthesizing one or two toxins. Initially, the HD/R strategy has been developed to limit the resistance towards Bt plants synthesizing one toxin. However, since 2003, new Bt cotton varieties synthesize two toxins simultaneously (BollgardII® et WidestrikeTM). We assess, with our model, the effectiveness of this strategy for Bt plants synthesizing one or two toxins.<p><p>Theoretical section B. Impact of the slowing down of the insect development reared on Bt plants on the effectiveness of the HD/R strategy. The experimental part demonstrates that larvae reared on a Bt diet have a protracted development duration. The consequence of this is a temporal separation between adult emergence in the two zones (Bt zone and refuge zone). This could affect the main assumption of the HD/R strategy, i. e. random mating independently of the genotype and of the native zone. In this third chapter, we study the impact of random mating disruption on the effectiveness of a HD/R strategy. We test two options to optimise the strategy in case of asynchrony: the use of Bt plants synthesizing a lower toxin concentration (limiting emergence asynchrony) or increasing the refuge zone size (favouring the survival of insect carrying one or two susceptible allele and thus optimising the dilution of resistance at the next generation). <p><p>This work is applied to a current issue. It uses some of the tools of theoretical biology (theories of population dynamics and population genetics) and develops a mathematical model. It provides some responses and some elements of thought about insect resistance management. It is also an illustration of the complementarity between experimental and theoretical biology.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.4073 seconds