• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation into different responses of a Pakistani biotype of Callosobruchus maculatus (Bruchidae: Coleoptera) to four new varieties of pulses from Pakistan

Sulehrie, Mohammad Abid Qaiyum January 2000 (has links)
No description available.
2

Bulk flow properties of wheat

Bian, Qi January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Kingsly Ambrose / Consistent and reliable flow of bulk wheat from hoppers and silos is very significant in wheat handling and processing. Bulk wheat flow challenges such as inconsistent flow, arching, etc., are common during handling. The irregular size and non-uniformity of physical properties, the presence of impurities affects the flow behavior during discharge. Chaff and insects infested kernels are the two most common impurities present in wheat. In this research, the effect of these two impurities on their physical and flow properties of wheat were studied. Physical and flow indicators, such as bulk, tapped, particle densities, angle of repose, Hausner’s ratio, Carr index, and porosity measures the flowability of uncompacted bulk solids. Meanwhile, flow properties tested by shear testing principle based on Jenike’s method, simulated bulk wheat under pressure in bins/hoppers. The dynamic properties tested quantify the energy required to flow, compressibility and permeability at dynamic handling situations. Due to the presence of impurities and moisture content differences, bulk density and angle of repose of wheat varied from 801.54kg/m3 to 718.36kg/m3, and 23.6° to 38.4°, respectively. Angle of internal friction and wall friction angle that reflect interaction between particles and particle with bins/hopper walls, ranged from 23.95° to 43.13° and 15.46° to 20.33°, respectively. In addition to instrumental flow property evaluation, the flow profile, discharge rate, and particle velocity during hopper flow of bulk wheat was studied using Particle Image Velocimetry method. Mass flow and funnel flow hopper dimensions were used for this flow profile analysis. The discharge rate decreased from 1.67 to 1.12 kg/s for mass flow and 1.42 to 0.86 kg/s for funnel flow when the chaff in bulk wheat increased from 0% to 7.5% (weight basis). Analysis of the active flow zone indicated that bulk wheat without chaff had a uniform flow compared to wheat with chaff in the bulk. The findings from this study will be useful for design of hopper bottom bins and handling equipment based on the wheat quality and percent moisture content.
3

Structures des paléoforêts européennes de la fin du Cénozoïque : apport des interactions plante-insecte / Structures of european paleoforests from the late Cenozoic : input from plant-insect interactions

Adroit, Benjamin 15 March 2018 (has links)
Les plantes et les insectes forment l’un des principaux niveaux trophiques des écosystèmes au cours des 325 derniers millions d’années. Aujourd’hui, l’augmentation rapide et continuelle de la température principalement causée par l’activité humaine depuis les derniers siècles, perturbe la balance des écosystèmes sur Terre. En conséquence, comprendre le rôle des interactions entre les plantes et les insectes, à travers le temps mais aussi les réseaux trophiques, est essentiel. Le registre fossile est une opportunité exceptionnelle d’examiner les réponses aux interactions plante-insecte lors de longues variations climatiques et à travers des traces de réaction de la plante sachant que la Terre a déjà été soumise à de nombreux changements climatiques. Durant les derniers 3 millions d’années, des oscillations entre de longues périodes froides et de courtes périodes chaudes ont eu lieu. Les écosystèmes Européens ont particulièrement été impactés par ces oscillations. Le Langerstätte de Willershausen (Allemagne) a été particulièrement étudié. C’est un gisement contenant plus de 8000 feuilles fossiles. Ces feuilles relatent d’une paléoforêt ayant existé il y a 3- 2,6 Ma dans un climat plus chaud qu’aujourd’hui (ca.+5°C). Dans ces conditions climatiques, de nombreuses espèces d’écosystèmes Méditerranéens étaient présentes, telles que l’Érable de Montpellier ou l’Olivier. En comparaison, d’autres paléoforêts ont été prise en compte : Berga (du même âge et proche de Willershausen) et Bernasso (plus jeune que Willershausen (2,16 — 1,96 Ma) localisée dans le sud de la France près de la Méditerranée. Ces forêts sont comparables notamment du fait des nombreux taxons communs qu’elles partagent. En outre, certaines de ces espèces sont aujourd’hui endémiques de la région du Caucase, telles que le Parrotie de Perse ou encore l’orme du Caucase. Le but de cette étude a été de déterminer en quoi les différences climatiques peuvent être impliquées dans les changements des interactions plante-insecte au sein des paléoforêts Européennes de la fin du Pliocène - début du Pléistocène. Les résultats obtenus ont permis de mettre en évidence les impacts de la saisonnalité des températures et précipitations facteurs impactants les interactions plante-insecte des paléoforêts Européennes. Il est apparu que les écosystèmes sujets à d’intenses saisonnalités hydriques ont pu engendrer une plus grande spécialisation des interactions plante-insecte déduite d’un fort taux d’interactions spécialistes observées. En parallèle, les températures les plus froides durant l’année semble être un facteur important dans la faible diversité de dégâts, probablement dû à un faible métabolisme de la majorité des insectes. L’absence de corrélation convergente entre la richesse des plantes et la richesse des interactions pourrait suggérer que l’influence des facteurs climatiques surpasse l’impact potentiel des interactions biotiques locales. Pour l’ensemble de ces paramètres qui ont pu avoir un impact sur les interactions plante-insecte, nos connaissances actuelles sont encore insuffisantes. Il serait intéressant de focaliser davantage d’études sur les forêts modernes avec les méthodes appliquées dans le fossile. C’est dans cette intention qu’une partie de cette étude a étudié une espèce de plante (Parrotia persica) actuellement endémique de la forêt Hyrcanienne (Iran). Cette forêt est supposée être une forêt analogue des paléoforêts Européennes étudiées dans cette thèse. Pour le moment, les observations qui ont été faites en Iran semblent corroborer notre interprétation. Au final, les études sur les interactions plante-insecte des forêts anciennes et actuelles, combinés avec les études de changements climatiques, pourraient nous permettre de mieux caractériser les relations entre les insectes et les plantes au sein d’une forêt. / Insects are the most diverse animals on Earth, and neatly associated with plants they represent two of the major groups of organisms both in species diversity and biomass quantity. The majority of their interactions involves insect feeding and insect parasitism mostly on leaves. Plant and insect compose one of the main trophic levels in ecosystems over the 325 million years. Today, the continuous and fast rising of temperature mostly due to human activities since the last century is disturbing the balance of ecosystems on Earth. Consequently, to understand the role of plant and insect interactions, through time but also trophic networks, becomes crucial. The fossil record is an exceptional opportunity to survey responses of plant-insect interaction to climate variations over long time interval through traces of plants reactions caused by interaction with insects, as Earth has already experienced many climate changes. For the last 3 million years, oscillations between long cold periods and short warm periods have occurred. Europe ecosystems has been particularly impacted. The Lagerstätte of Willershausen (Germany) was specifically study. It is an exceptional fossil outcrop that contains ca. 8000 collected fossil leaves. These leaves testify a paleoforest developed there around 3—2.6 Ma ago in a climate warmer than today (ca. +5°C). Under these conditions, many plant species typical of the Mediterranean ecosystems were settled there, such as Montpellier maple or Olive tree. For comparison, other paleoforests were studied: Berga (similar in age and geographically close to Willershausen) and Bernasso (younger than Willershausen (2.16—1.96 Ma) and located in southern France close to Mediterranean. These forests were compared as many common plant taxa were similar between each other. Furthermore, some species today endemic to the Caucasian region, such as Persian ironwood or Caucasian elm, were also present in these outcrops. The aim of this study is to determine how far the climate differences could be involved in the changes of plant-insect interactions in European paleoforests of the late Pliocene – early Pleistocene. Results highlighted the impacts of both hydric and temperature seasonality, hitherto underestimated in the fossil record, on the patterns of plant-insect interaction in the European paleoforests. It appeared that ecosystems subject to intense hydric seasonality could led to higher specialization of plant-insect interaction inferred by higher rate of observed damages due to ‘specialists insects’. In parallel, the coolest temperature during the year seems to be a major factor in the low diversity of damage in paleoforest, presumably due to lower insect metabolism. Absence of convergent correlations between plant richness and damage richness could suggested that influence of climatic factors override impact of these local biotic factors. In order to understand the whole parameters that could have an impact on plant-insect interactions, our current knowledges are still insufficient. It would be wise to make more investigations on modern forests with the methods as applied in fossil record community structure studies. These investigations could help to understand the factors potentially involved in the establishment of a pattern of plant-insect interactions. It is in this perspective that a part of this study was precisely focused on one plant species (Parrotia persica) currently endemic to the Hyrcanian forest (Iran). This forest is supposed to be an analogue forest of the European paleoforests as those studied in this thesis. For now, observations made in Iran tend to corroborate our interpretation. Finally, the studies on plant-insect interactions in past and extant ecosystems, combined with the study of climatic changes, should permit us to better characterize the relations between plants and insects in forests through time.
4

Urban Lawn Management: Addressing the Entomological, Agronomic, Economic, and Social Drivers

Alumai, Alfred 05 December 2008 (has links)
No description available.
5

Effectiveness of varied refugia configurations for the genetically modified maize (Zea mays L.) in Kwa-Zulu-Natal midlands

Moodley, Odeshnee 11 1900 (has links)
Genetically modified (GM) white and yellow maize, Zea mays, has been commercially released and cultivated in South Africa since 1997/1998. The traits expressed are insect resistance and herbicide tolerance conferred by the bacteria Bacillus thuringiensis (Bt) Cry genes and Agrobacterium 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase gene, respectively. The Cry genes have been used widely to control lepidopteran insect pests but insect resistance to GM Bt crops has been a concern since the introduction of this technology. A management strategy includes refugia planting of 5% non-Bt plants, with no insecticide application, and 20%, where insecticide application is allowed. These refugia are designed to allow the survival of insect pests within restricted planted zones. However, in South Africa there are reports of Bt-resistant stem borer (Busseola fusca) (Fuller) (Lepidoptera: Noctuidae) and non-compliance with refuge planting. The aims of this study were two-fold: 1. To conduct a survey among KwaZulu-Natal (KZN) GM maize growers to ascertain information such as level of compliance with refuge planting and to determine which refugia were predominantly planted and reasons thereof; 2. To conduct a replicated field trial to determine yield, insect borer damage and economic benefit of the 5% unsprayed and 20% sprayed refuge options (including three configurations namely strip, perimeter and block and a 5 and 20% ‘refuge-in-a-bag’ option). The survey indicated that 28 out of 29 (96.6%) KZN Bt maize growers plant the 5% non-sprayed refuge with 27 (96.4%) of those respondents planting the strip configuration for the purpose of insect management (75%) and ease of planting (32.2%). The survey also showed that 7 (seven) i.e. 21.9% of KZN Bt maize growers observed borer damage and although growers are now fully compliant with refugia planting requirements, initially 7 respondents (24.1%) did not comply with or plant refugia correctly. Furthermore, 7 respondents reported insect borer damage in their maize with 4 of the 7 instances (57.1%) likely stemming from incorrectly planted refugia. vii No significant differences in yield or insect damage were observed between the 5 and 20% refugia for any of the planting configurations in the field trial. However due to costs involved with insecticide application and labour required for the operation in the 20% option, these treatments were less economically advantageous than the non-Bt control. The 20% block and strip configurations had a cost benefit ratio of ZAR 7.21 and ZAR 6.67 respectively, earned per R1 spent by the grower compared with ZAR 7.76 in the sprayed control. The cost-benefit comparison for the 5% block and strip configurations was ZAR 8.48 and ZAR 7.71, respectively compared with ZAR 9.44 in the unsprayed control. In addition, the 20% seed mixture limited borer damage to 4.95% when compared with 15.77% damage in the sprayed control (ANOVA, F pr = 0.124). The seed mixtures are not available commercially and the results from the survey indicated that some education and marketing by the seed companies would be advisable prior to their release to the farming community. In order to determine which of the refuge options between 5 and 20% would be more advantageous for growers overall, regardless of the planting configuration; data were grouped and analysed. There were no significant differences in either the yield or insect damage for the 5 and 20% refugia, but the cost-benefit calculations indicated that the 5% option was more cost effective – for the 5 and 20% refugia, ZAR 7.97 and ZAR 7.15 respectively, earned per ZAR 1 spent by the grower (ANOVA, F pr. = 0.03). This is because no insecticide was used in the 5% treatments. Mean ear damage comparisons between the 5 and 20% refugia showed that the 20% refuge in the perimeter configuration incurred the least damage (2.65% ear damage) compared with 5% perimeter (10.86% ear damage), although the reasons for this are not clear. While the results of the field trials showed no significant differences in insect damage and yield with regard to choice of refuge configuration, monitoring insect resistance management remains an integral part of Bt maize crops in South Africa, in order to delay further resistance development and to prolong the viability of Bt technology. / Agriculture and  Animal Health / M. Sc. (Agriculture)
6

Effectiveness of varied refugia configurations for genetically modified maize (Zea mays L.) in KwaZulu-Natal midlands

Moodley, Odeshnee 11 1900 (has links)
Genetically modified (GM) white and yellow maize, Zea mays, has been commercially released and cultivated in South Africa since 1997/1998. The traits expressed are insect resistance and herbicide tolerance conferred by the bacteria Bacillus thuringiensis (Bt) Cry genes and Agrobacterium 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase gene, respectively. The Cry genes have been used widely to control lepidopteran insect pests but insect resistance to GM Bt crops has been a concern since the introduction of this technology. A management strategy includes refugia planting of 5% non-Bt plants, with no insecticide application, and 20%, where insecticide application is allowed. These refugia are designed to allow the survival of insect pests within restricted planted zones. However, in South Africa there are reports of Bt-resistant stem borer (Busseola fusca) (Fuller) (Lepidoptera: Noctuidae) and non-compliance with refuge planting. The aims of this study were two-fold: 1. To conduct a survey among KwaZulu-Natal (KZN) GM maize growers to ascertain information such as level of compliance with refuge planting and to determine which refugia were predominantly planted and reasons thereof; 2. To conduct a replicated field trial to determine yield, insect borer damage and economic benefit of the 5% unsprayed and 20% sprayed refuge options (including three configurations namely strip, perimeter and block and a 5 and 20% ‘refuge-in-a-bag’ option). The survey indicated that 28 out of 29 (96.6%) KZN Bt maize growers plant the 5% non-sprayed refuge with 27 (96.4%) of those respondents planting the strip configuration for the purpose of insect management (75%) and ease of planting (32.2%). The survey also showed that 7 (seven) i.e. 21.9% of KZN Bt maize growers observed borer damage and although growers are now fully compliant with refugia planting requirements, initially 7 respondents (24.1%) did not comply with or plant refugia correctly. Furthermore, 7 respondents reported insect borer damage in their maize with 4 of the 7 instances (57.1%) likely stemming from incorrectly planted refugia. vii No significant differences in yield or insect damage were observed between the 5 and 20% refugia for any of the planting configurations in the field trial. However due to costs involved with insecticide application and labour required for the operation in the 20% option, these treatments were less economically advantageous than the non-Bt control. The 20% block and strip configurations had a cost benefit ratio of ZAR 7.21 and ZAR 6.67 respectively, earned per R1 spent by the grower compared with ZAR 7.76 in the sprayed control. The cost-benefit comparison for the 5% block and strip configurations was ZAR 8.48 and ZAR 7.71, respectively compared with ZAR 9.44 in the unsprayed control. In addition, the 20% seed mixture limited borer damage to 4.95% when compared with 15.77% damage in the sprayed control (ANOVA, F pr = 0.124). The seed mixtures are not available commercially and the results from the survey indicated that some education and marketing by the seed companies would be advisable prior to their release to the farming community. In order to determine which of the refuge options between 5 and 20% would be more advantageous for growers overall, regardless of the planting configuration; data were grouped and analysed. There were no significant differences in either the yield or insect damage for the 5 and 20% refugia, but the cost-benefit calculations indicated that the 5% option was more cost effective – for the 5 and 20% refugia, ZAR 7.97 and ZAR 7.15 respectively, earned per ZAR 1 spent by the grower (ANOVA, F pr. = 0.03). This is because no insecticide was used in the 5% treatments. Mean ear damage comparisons between the 5 and 20% refugia showed that the 20% refuge in the perimeter configuration incurred the least damage (2.65% ear damage) compared with 5% perimeter (10.86% ear damage), although the reasons for this are not clear. While the results of the field trials showed no significant differences in insect damage and yield with regard to choice of refuge configuration, monitoring insect resistance management remains an integral part of Bt maize crops in South Africa, in order to delay further resistance development and to prolong the viability of Bt technology. / Agriculture and  Animal Health / M. Sc. (Agriculture)

Page generated in 0.0583 seconds