• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sifflement de diaphragmes en conduit soumis à un écoulement subsonique turbulent

Lacombe, Romain 16 March 2011 (has links) (PDF)
Les diaphragmes utilisés comme organes de perte de charge à l'intérieur des tuyauteries de centrales électriques ont été mis en cause dans la création de sifflement. Les conséquences de ces phénomènes sont des niveaux de bruit et de vibration pouvant dépasser les valeurs admissibles. L'objectif de la thèse est d'étudier le sifflement sur la base d'expérimentations et de calculs numériques afin de proposer des outils de compréhension et de prédiction. Un résultat de la thèse correspond à l'identification expérimentale et numérique des conditions d'amplification acoustique au niveau de diaphragmes, phénomène nécessaire au sifflement. Les expériences montrent que les plages de sifflement, exprimées sous la forme d'un nombre de Strouhal fonction de l'épaisseur du diaphragme et de la vitesse dans l'orifice, s'étendent de 0,2 à 0,4 et de 0,7 à 0,9 et sont indépendantes du nombre de Reynolds. Le potentiel de sifflement de diaphragmes est également caractérisé à l'aide de simulations numériques. Deux approches sont utilisées avec des calculs U-RANS incompressibles et des simulations LES compressibles. Il apparaît que la simulation numérique permet de reproduire l'effet d'amplification acoustique à l'origine du sifflement, pour des pas de discrétisation spatial au coin amont de l'orifice suffisamment petit. Un autre résultat de la thèse est la définition des paramètres contrôlant les caractéristiques du sifflement en présence de réflexions acoustiques. Une analyse de stabilité linéaire prédit l'apparition d'un sifflement et sa fréquence. L'amplitude de sifflement est maximum pour un nombre de Strouhal autour de 0,25 et augmente avec le taux de réflexion autour du diaphragme.
2

Sifflement de diaphragmes en conduit soumis à un écoulement subsonique turbulent / Whistling of orifices in duct under turbulent subsonic flow

Lacombe, Romain 16 March 2011 (has links)
Les diaphragmes utilisés comme organes de perte de charge à l'intérieur des tuyauteries de centrales électriques ont été mis en cause dans la création de sifflement. Les conséquences de ces phénomènes sont des niveaux de bruit et de vibration pouvant dépasser les valeurs admissibles. L'objectif de la thèse est d'étudier le sifflement sur la base d'expérimentations et de calculs numériques afin de proposer des outils de compréhension et de prédiction. Un résultat de la thèse correspond à l’identification expérimentale et numérique des conditions d’amplification acoustique au niveau de diaphragmes, phénomène nécessaire au sifflement. Les expériences montrent que les plages de sifflement, exprimées sous la forme d’un nombre de Strouhal fonction de l’épaisseur du diaphragme et de la vitesse dans l’orifice, s’étendent de 0,2 à 0,4 et de 0,7 à 0,9 et sont indépendantes du nombre de Reynolds. Le potentiel de sifflement de diaphragmes est également caractérisé à l’aide de simulations numériques. Deux approches sont utilisées avec des calculs U-RANS incompressibles et des simulations LES compressibles. Il apparaît que la simulation numérique permet de reproduire l’effet d’amplification acoustique à l’origine du sifflement, pour des pas de discrétisation spatial au coin amont de l’orifice suffisamment petit. Un autre résultat de la thèse est la définition des paramètres contrôlant les caractéristiques du sifflement en présence de réflexions acoustiques. Une analyse de stabilité linéaire prédit l’apparition d’un sifflement et sa fréquence. L’amplitude de sifflement est maximum pour un nombre de Strouhal autour de 0,25 et augmente avec le taux de réflexion autour du diaphragme. / Orifices used as pressure drop devices in pipes of power plants can cause tonal noise. The consequences of whistling are noise and vibration levels higher than what is acceptable. The purpose of the present works is to study the whistling phenomenon with experiments and numeric in order to propose comprehension and prediction tools. One of the results of the study is the experimental and numerical identification of the acoustic amplification conditions at the orifice, which is a necessary phenomenon for whistling. The experiments show that the whistling ranges, expressed in a Strouhal number function of the orifice thickness and the flow velocity inside the orifice, lie between 0.2 and 0.4 and between 0.7 and 0.9 and that they are independent of the Reynolds number. The whistling ability of orifices has also been defined with numerical simulations. Two approaches are used, the first consisting of incompressible U-RANS calculations, the second based on compressible LES. The numerical simulations are able to capture the acoustic amplification at the orifice, for a spatial discretization small enough at the upstream edge of the orifice. Another result of the study is the definition of the parameters controlling the whistling features when acoustic reflections are present. A linear stability analysis is able to predict the whistling frequency, and it is shown that the whistling amplitude is maximum at a Strouhal number of 0.25 and that it increases with the global reflection surrounding the orifice.
3

Analyse numérique des instabilités aérodynamiques dans un compresseur centrifuge de nouvelle génération / Numerical analysis of aerodynamic instabilities in a new generation centrifugal compressor

Bénichou, Emmanuel 10 December 2015 (has links)
L’étude effectuée au cours de cette thèse a permis de caractériser numériquement les instabilités d’origine aérodynamique rencontrées dans un compresseur centrifuge dessiné par Turbomeca. Ce compresseur est composé d’une roue directrice d’entrée, d’un rouet centrifuge, d’un diffuseur radial et de redresseurs axiaux. Le module expérimental, dénommé Turbocel, sera accueilli au LMFA courant 2016. Le contenu de cette étude repose donc exclusivement sur des résultats numériques dont certains sont cependant comparés à des résultats expérimentaux partiels obtenus par Turbomeca sur une configuration proche. _ Le fonctionnement du compresseur est analysé à différentes vitesses de rotation, à partir de simulations RANS et URANS menées avec le code elsA. Du point de vue de la méthodologie, deux points importants sont à retenir :- Du fait du caractère transsonique de l’écoulement dans le rouet et le diffuseur radial à haut régime de rotation, les simulations RANS stationnaires ne permettent pas d’accéder à une description satisfaisante des phénomènes physiques. Cela est dû à l’utilisation d’un plan de mélange aux différentes interfaces rotor-stator qui a pour effet d’empêcher les ondes de choc de remonter à l’amont, et qui affecte tant la physique de l’écoulement que l’étendue de la plage de fonctionnement stable.- En-dessous d’un certain débit, les calculs URANS sur période machine révèlent que le comportement de l’étage n’obéit plus à la périodicité spatio-temporelle mono-canal. Une plage instable est alors obtenue à toutes les iso-vitesses simulées. A bas régime de rotation, une autre plage stable existe lorsque le compresseur est suffisamment vanné. L’étage retrouve alors une périodicité spatio-temporelle, à condition d’étendre le domaine de calcul dans le stator à deux canaux inter-aubes. En ce qui concerne les limites de stabilité de Turbocel, différentes évolutions sont décrites selon la vitesse de rotation considérée :- A haut régime de rotation, une basse fréquence commence à émerger près du point de rendement maximal et son intensité ne fait qu’augmenter jusqu.au pompage.- A bas régime, une signature basse fréquence comparable se manifeste près du point de rendement maximal mais disparaît passé un certain vannage, et n’est donc présente que sur une plage de débit délimitée. La seconde zone stable peut alors être numériquement parcourue jusqu.au pompage proprement dit. La signature basse fréquence est imputée à l’instauration d’une recirculation dans l’inducteur qui une fois établie est quasi-stationnaire. Les résultats numériques mettent en évidence que la source d’instabilité sévère sur Turbocel provient du diffuseur aubé. En fonction du point de fonctionnement, ce composant adopte des comportements différents, entre lesquels une certaine continuité existe, et ses performances chutent progressivement lorsque le débit diminue. Au final, les domaines de stabilité de l’étage de compression peuvent être reliés au type d’écoulement qui se développe dans le diffuseur radial, et apparaissent dictés par le diffuseur semi-lisse à haut régime de rotation. Enfin, afin d’étendre les plages de fonctionnement stable, une stratégie de contrôle basée sur l’aspiration de couche limite dans le diffuseur aubé a également été déterminée dans le cadre de cette thèse. Son évaluation fera l’objet d’études ultérieures sur Turbocel. / The present study aims at characterizing the aerodynamic instabilities involved in a centrifugal compressor designed by Turbomeca, by means of numerical simulation. This compressor is composed of inlet guide vanes, a centrifugal impeller, a radial vaned diffuser and axial outlet guide vanes. The test module, named Turbocel, will be delivered to the LMFA in 2016. Thus, the results presented in this manuscript are only based on CFD, although some of them are compared to experimental results obtained by Turbomeca on a close configuration.RANS and URANS simulations are performed for several rotational speeds, using the elsA software.Two methodological key points are to be emphasized:- As the flow in both the impeller and the radial diffuser is transonic at high rotational speed, steady RANS simulations cannot provide a satisfactory description of the physical phenomena taking place. This can be explained by the use of the mixing plane approach which prevents shock waves to extend upstream the rotor-stator interfaces, and which impacts the flow field predicted as well as the prediction of the stable operating range.- Below a given massflow rate, URANS simulations covering the spatial period of the compressor prove that the stage behavior does not obey to the single passage spatio-temporal periodicity anymore. An unstable operating range then appears at all the simulated rotational speeds. At low rotational speed, another stable range is however obtained if the compressor is further throttled’ A new periodicity arises on this massflow range, provided that the stator domain is extended to two neighboring blade passages. Concerning the stability domains of Turbocel, different evolutions are obtained depending on the rotational speed:- At high rotational speed, a low frequency phenomenon starts to develop near the peak efficiency point and its intensity keeps increasing until surge happens.- At low rotational speed, a low frequency signature also appears near the peak efficiency point, but it then vanishes when the compressor is further throttled, so that only a restricted operating range exhibits this instability. It then gives rise to a second stable operating range which can be described numerically, ending with surge itself. The low frequency signature is attributed to the enhancement of a flow recirculation in the inducer which, once fully established, is quasi-steady. The numerical results underline that the source of severe instability in the compressor comes from the vaned diffuser. Depending on the operating point, this component can adopt different behaviors, between which a relative continuity exists, and its performances decrease when the massflow rate decresases. The overall stage performances prove that at high rotational speed, the global stability is driven by the semi-vaneless diffuser and depends on the flow developing in the radial diffuser. Finally, in order to extend the stable operating range of the compressor, a flow control strategy based on boundary layer suction has also been determined in the diffuser. Its impact on the performances of Turbocel will be deeply studied later on.

Page generated in 0.0942 seconds