• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of ceacam1 and shp1 in the regulation of insulin sensitivity and hepatic glucose and lipid metabolism

Xu, Elaine Meng 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / L’obésité et le diabète de type 2 (T2D) sont étroitement associés à la résistance à l’insuline, une maladie métabolique qui se développe suite à un défaut causé par une réduction de la signalisation de l’insuline et de sa clairance. Afin de comprendre la pathogenèse de la résistance à l’insuline plusieurs molécules qui régulent les voies de signalisation ainsi que la clairance sous contrôle du récepteur à l’insuline ont été étudiées, incluant la protéine tyrosine phosphatase (PTP) SHP1 et la molécule carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1 or CC1) qui est régulée en aval sous le contrôle de SHP1. Les nombreuses isoformes de CC1 contribuent à différentes fonctions cellulaires. Dans le foie, l’isoforme CC1-L, qui est phosphorylée sur tyrosine (Tyr), joue un rôle métabolique essentiel dans la régulation de la clairance de l’insuline et dans la suppression de l’activité de la synthase des acides gras (FAS). Nous avons démontré que des souris invalidées pour CC1 (Cc1-/-) sous un régime standard faible en gras (SD) développent néanmoins une importante stéatose hépatique qui est démontré par une augmentation de triglycérides, de cholestérol total ainsi que de cholestérol estérifié dans le foie. Sous un régime contenant 55% de gras (HFD) ces mêmes souris démontrent une prédisposition au développement de la stéatose et dysfonction hépatique induite par le régime, indiqués par une accumulation de lipides hépatiques et une augmentation d’enzymes marqueurs de dommage hépatique dans la circulation. La stéatose hépatique dans la souris Cc1-/- est liée à une augmentation significative d’importantes enzymes lipogéniques et de la synthèse du cholestérol qui sont régulés suite à une augmentation de l’activité nucléaire des facteurs de transcription Srebp1c et Srebp2. Comparées aux souris contrôle sauvages (WT) les souris CC1-/- ont démontré une réduction de la clairance de l’insuline, une intolérance au glucose, une résistance à l’insuline hépatique et une augmentation d’expression des activateurs transcriptionels hépatiques PGC-1 et FoxO1. L’absence de CC1 a aussi exacerbé l’intolérance au glucose et la résistance à l’insuline hépatique induite par le régime à haute teneur de gras mais la clairance de l’insuline n’était pas diminuée dans les souris Cc1 -/-. Nos donnés indiquent que CC1 est un important régulateur de la lipogénèse hépatique et que les souris CC1-/- sont prédisposées à développer une stéatose hépatique qui mène à une résistance à l’insuline hépatique et des dommages dans le foie qui sont surtout évidentes sous un régime riche en lipides. Une importante Tyr phosphatase de CC1 est SHP1. Précédemment nous avons démontré que SHP1 est un important régulateur de l’homéostasie du glucose et de la clairance de l’insuline par le foie, cependant son rôle dans l’obésité liée au diabète reste méconnu. Nous rapportons ici que l’expression de SHP1 est significativement augmentée dans les tissus métaboliques de souris obèses sous régime HFD. Nous avons généré des souris invalidées pour SHP1 spécifiquement dans les hépatocytes (Ptpn6H-KO) pour investiguer le rôle de SHP1 dans le développement de la résistance à l’insuline et de la stéatose hépatique. Sous régime HFD les souris Ptpn6H-KO deviennent aussi obèses que les souris non invalidées pour SHP1 (Ptpn6f/f). Malgré ceci les souris Ptpn6H-KO démontrent une amélioration de la glycémie à jeun et une protection contre la résistance à l’insuline induite par l’obésité qui est confirmée par la suppression de la synthèse de glucose hépatique ainsi qu’une amélioration de l’activation du récepteur pour l’insuline avec une augmentation concomitante des voies de signalisation Akt. Il est aussi possible que la clairance de l’insuline accrue qu’on observe dans les souris Ptpn6H-KO soit due à une augmentation de la phosphorylation sur tyrosine de CC1. Les souris obèses Ptpn6H-KO montrent une augmentation de stéatose hépatique qui est le résultat de 1) une augmentation de lipogénèse hépatique associée à une augmentation importante de l’activité et de l’expression de SREBP-1 et des enzymes lipogéniques en aval FAS et ACC, 2) une augmentation de la captation postprandiale des acides gras qui est possiblement liée à une augmentation de l’expression du gène et de l’activité nucléaire de PPARγ, 3) une diminution de la sécrétion des triglycérides et de l’apolipoprotéine B sous le forme de lipoprotéines de très basse densité (VLDL). Étonnamment, malgré le niveau élevé de stéatose hépatique, le profil inflammatoire dans le foie des souris Ptpn6H-KO était similaire ou même amélioré comparé aux souris contrôles Ptpn6f/f et ceci était accompagné d’une diminution de dommage hépatocellulaire. Ces résultats démontrent que SHP1 est un nouveau médiateur de la résistance à l’insuline dans les hépatocytes et contribue à la détérioration du métabolisme du glucose induite par l’obésité. Chez la souris Ptpn6H-KO la stéatose hépatique induite par le régime suggère par ailleurs un autre rôle de SHP1 dans la régulation du métabolisme hépatique des lipides. Malgré le fait que CC1 et SHP1 se retrouvent dans le même complexe que Cdk2 et le récepteur de l’insuline, ils jouent des rôles opposés, CC1 étant un régulateur positif et SHP1 un régulateur négatif de la clairance de l’insuline. Ceci est en accord avec la régulation hépatique par le glucose des voies de signalisation de l’insuline pour ces deux molécules car les souris Cc1-/- démontrent une détérioration du métabolisme du glucose et de la signalisation de l’insuline alors que les souris Ptpn6H-KO démontrent une amélioration. Notre observation de stéatose hépatique chez ces deux modèles animaux suggère que CC1 et SHP1 limitent la synthèse et l’entreposage des lipides hépatiques de façon dépendante ou indépendante de la signalisation de l’insuline. Les résultats de ces études utilisant des modèles invalidés pour CC1 ou SHP1 révèlent des mécanismes du contrôle de la synthèse de glucose hépatique et du métabolisme des lipides qui sont très complexes et distincts. En plus ces résultats nous apportent une compréhension importante de la régulation hépatique de l’action et de la clairance de l’insuline. / Obesity and type 2 diabetes mellitus (T2D) are tightly associated with a common link, insulin resistance, a metabolic disorder developed from defective insulin action involving impaired insulin signaling and clearance. To investigate the pathogenesis of insulin resistance, many molecules modulating its signaling pathways as well as insulin receptor-mediated insulin clearance have been studied, including the protein tyrosine phosphatase (PTP) SHP1 and its regulated downstream molecule carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1 or CC1). CC1 in multiple isoforms contributes differentially to various cellular functions, the tyrosine (Tyr)-phosphorylated isoform of CC1 (CC1-L) is known to play an essential metabolic role in the hepatic regulation of insulin clearance and insulin-mediated acute inhibition of fatty acid synthase (FAS) activity. We have found that CC1-deficient (Cc1-/-) mice on standard diet (SD) already develop spontaneous hepatic steatosis with significantly elevated accretion of triglyceride (TG), total and esterified cholesterol. When challenged with a 55% kcal high-fat diet (HFD), these mice show greater susceptibility to the development of diet-induced hepatic steatosis and dysfunction, indicated by higher hepatic lipid content and serum levels of hepatic enzymes as markers of liver damage. Hepatic steatosis in the Cc1-/- mice is linked to a significant increase of key lipogenic (FAS, ACC) and cholesterol synthetic (HMGCR) enzymes, which is a result of increased nuclear activity of their positive gene transcription factors Srebp1c and Srebp2. Compared to their wild-type (WT) littermate controls, Cc1-/- mice exhibited impaired insulin clearance, glucose intolerance, liver insulin resistance, and elevated hepatic key gluconeogenic transcriptional activators Pgc1 and FoxO1. Lack of CC1 also exacerbated the HFD-induced glucose intolerance and hepatic insulin resistance, while insulin clearance was not further deteriorated. These data demonstrate that CC1 is a key regulator of hepatic lipogenesis and that Cc1-/- mice are predisposed to liver steatosis, leading to hepatic insulin resistance and liver damage, particularly when chronically exposed to dietary fat. An important Tyr phosphatase of CC1, SHP1, has been found previously by our lab to regulate glucose homeostasis and liver insulin clearance, but its potential implication in obesity-linked insulin resistance and hepatic steatosis has not yet been examined. We hereby report that SHP1 expression is significantly upregulated in metabolic tissues of HFD-fed obese mice. We have also further investigated the role of hepatocyte SHP1 in promoting insulin resistance and hepatic steatosis by generating hepatocyte-specific SHP1 knockout mice (Ptpn6H-KO). Upon HFD feeding, Ptpn6H-KO mice develop obesity as their Ptpn6f/f littermates. With consistently improved fasting glycemia, these mice are protected from obesity-induced liver insulin resistance as revealed by normalized insulin suppression of hepatic glucose production and hepatic insulin signaling with improved activation of insulin receptor and downstream signaling through Akt. More rapid insulin clearance in Ptpn6H-KO mice due to heightened CC1 tyrosine phosphorylation is also a possible contribution to the improved insulin action. Unexpectedly, obese Ptpn6H-KO mice exhibit enhanced hepatic steatosis. In detailed mechanisms, this is a result of 1) augmented hepatic lipogenesis, marked by upregulated activity and expression of SREBP-1 as well as the downstream regulated lipogenic enzymes such as FAS and ACC, 2) increased postprandial fatty acid uptake, possibly linked to the upregulation of PPAR gene expression and nuclear activity, and 3) decreased postprandial TG output in apolipoprotein B (ApoB)-associated lipoprotein particles, i.e. very low density lipoprotein (VLDL). More interestingly, the steatotic livers of these Ptpn6H-KO mice display comparable or even reduced level of inflammation accompanied by significantly less hepatocellular damage than that in their Ptpn6f/f counterparts. These results present hepatocyte SHP1 as a novel mediator of insulin resistance compromising hepatic glucose metabolism in diet-induced obesity. The enhanced diet-induced hepatic steatosis in Ptpn6H-KO mice provides a new role for SHP1 in liver lipid metabolism and further supports the bifurcation of insulin signaling in the regulation of hepatic glucose and lipid homeostasis or also confirms a possible disconnection between hepatic regulation of glucose and lipid metabolism. Although both CC1 and SHP1 are found in the same complex with Cdk2 and insulin receptor to regulate insulin clearance, they play opposing roles as CC1 is the positive regulator and SHP1 being the negative one. This is in accordance with the hepatic glucoregulation of insulin signaling for both molecules, since Cc1-/- mice show impaired glucose metabolism and insulin signaling whereas Ptpn6H-KO mice exhibit improvement. Interestingly, our observation of hepatic steatosis in both animal models, though with different characteristics, suggests that both CC1 and SHP1 limit hepatic lipid synthesis and storage, dependent or independent of insulin signaling. Findings from these studies using animal models lacking CC1 and SHP1 reveal complex and differential regulatory mechanisms of hepatic glucose and lipid metabolism, and they also provide important understanding of the hepatic regulation of insulin action and clearance.
2

Role of inflammation in the pathogenesis of insulin resistance in obesity : specific role of reactive oxygen and reactive nitrogen species

Issa, Nahla 23 April 2018 (has links)
L’inflammation chronique associée à l’obésité contribue à la pathogénèse de plusieurs troubles métaboliques dont la résistance à l’insuline. Cette inflammation est associée avec le développement du stress oxydant et est reconnue comme un facteur impliqué dans l’inhibition de la signalisation de l’insuline. Ainsi, le but de ces études était d’évaluer le rôle du stress oxydant dans le développement de la résistance à l’insuline associée à l’inflammation. En particulier, nous avons cherché à évaluer le rôle de l’ion superoxyde et de radicaux lipidiques qui, associés à l’induction de la forme inductible de la NO synthase (iNOS), pourraient jouer un rôle clé dans la promotion de nitration de tyrosine des protéines impliquées dans la signalisation d’insuline, ainsi que dans la promotion des troubles métaboliques associés à l’obésité. Dans la première étude, nous avons démontré que le traitement d’adipocytes avec des cytokines induit l’expression de l'isoforme NADPH oxidase 3 (NOX3) de la famille des NADPH oxydases (NOX) et parallèlement augmente la production de l'ion superoxyde. Ce traitement a aussi augmenté la lipolyse et la phosphorylation de la lipase hormono-sensible. Fait intéressant, l’inhibition de l’activité de NOX avec le Diphenyleneiodonium (DPI), a renversé l’effet des cytokines sur la lipolyse, la production de superoxyde et la phosphorylation de la lipase hormono-sensible. De plus, l’inhibition spécifique de l’expression de NOX3 via l'expression d'un siRNA a eu le même effet que le DPI. Cela indique que NOX3 est la source majeure de production de superoxyde induit par l’inflammation et ainsi régule négativement la lipolyse par l’augmentation de l’activité de la lipase hormono-sensible. Dans la deuxième étude, nous avons identifié un rôle pour NOX3 et l'anion superoxyde dans le mécanisme de nitration de tyrosines sur Akt dans les cellules hépatiques FAO. Aussi, l’expression de NOX3 a augmenté dans les cellules hépatiques primaires traitées avec cytokines en même temps que l’augmentation de 3-nitrotyrosine, une empreinte reconnue de la formation de nitrotyrosine. Nous avons observé qu’une diète riche en lipides a pour effet d’augmenter la nitration sur tyrosine dans les foies de souris ainsi que dans les cellules hépatiques primaires isolées des foies de ces souris. De plus, cette diète a augmenté la nitration de tyrosines sur Akt dans le foie de souris obèses. Finalement, nous avons identifié deux résidus, tyrosine 152 et tyrosine 38, qui sont nitratés sur Akt1, et qui pourraient réguler négativement l’activité d’Akt lorsque nitratés. Dans la troisième étude, nous avons démontré que le captage des radicaux lipides avec le "spin trap" α -(4-Pyridyl-1-oxide)-N-tert-butylnitrone (POBN) dans les souris nourries avec une diète riche en lipides a diminué la masse adipeuse comparativement avec les souris obèse non traitées. Cet effet a été associé à une amélioration de la tolérance au glucose et de la sensibilité à l’insuline, ainsi que d'une diminution de l’inflammation dans la tissu adipeux. En plus, on a remarqué une amélioration de la fonction mitochondriale dans le muscle et le tissu adipeux. Dans le foie, la traitement avec POBN a empêché l’accumulation des lipides et a amélioré le métabolisme de glucose. L'ensemble de nos études démontre le rôle de l'anion superoxyde généré par NOX3 dans le mécanisme de nitration de tyrosine dans le foie et la modification de la fonction métabolique dans les adipocytes. Aussi, nous avons identifié deux tyrosines nitratées sur Akt1 qui pourraient être impliquées dans la régulation de son activité. Enfin, nous avons montré que POBN semble d’avoir un effet préventif sur l’obésité qui est associé avec l’amélioration des plusieurs paramètres métaboliques. / Chronic low-grade inflammation is considered one of the triggers of obesity-associated insulin resistance. Metabolic inflammation goes along with increased oxidative and nitrosative stress, but whether this promotes insulin resistance in obesity remains ill-defined. Thus, the primary objective of this thesis was to study the role of oxidative and nitrosative stress in the development of inflammation mediated insulin resistance and in particular to highlight the role of superoxide anion production, lipid radical generation, and iNOS induction, in mediating tyrosine nitration of insulin signaling proteins and other metabolic dysfunctions associated with obesity. In chapter I, we showed for the first time that treatment of adipocytes with cytokines induced NADPH oxidase-3 (NOX3) expression along with increasing superoxide production. Cytokine treatment also increased lipolysis as indicated by measuring free glycerol release and caused increase in the phosphorylation of hormone sensitive lipase. Interestingly, pharmacological inhibition of NOX activity by Diphenyleneiodonium (DPI) reversed the effect of cytokines on lipolysis and on the phosphorylation of HSL in line with decreasing superoxide production. Specific knockdown of NOX3 gene expression in adipocytes displayed the same effects as those exerted by DPI. These results indicate that NOX3 is the major NOX involved in superoxide production in 3T3L1 adipocytes and a regulator of lipolysis in inflammatory settings. In chapter II, we identified a new role of NOX3 and superoxide production in mediating tyrosine nitration on Akt in FAO hepatic cells. NOX3 expression was increased in primary hepatocytes after cytokine treatment together with an increase in 3-nitrotyrosine. Interestingly, primary hepatocytes isolated from high fat (HF) fed mice displayed more tyrosine nitration when compared to primary hepatocytes isolated from mice on chow diet. Also, we showed for the first time a tendency for high fat feeding to increase tyrosine nitration specifically on Akt. More importantly, two novel tyrosine nitrated sites on Akt1 were identified: tyrosine 152 and tyrosine 38, which seem to play a role in negatively regulating Akt activity when tyrosine nitrated. In chapter III, scavenging lipid radicals by α -(4-Pyridyl-1-oxide)-N-tert-butylnitrone (POBN) reversed the metabolic disorders caused by HF feeding in mice. POBN treated mice exhibited decrease in fat mass when compared to their HF counterparts. This effect was associated with enhanced glucose tolerance and insulin sensitivity. Also, adipose tissue inflammation was alleviated and mitochondrial function was ameliorated, insulin signaling in skeletal muscle was restored and mitochondrial oxidative metabolism was also enhanced. In the liver, POBN treatment prevented fat accumulation and enhanced lipid and glucose metabolism. Together these results highlight the important role of NOX3 generated superoxide in mediating tyrosine nitration in liver and in altering metabolic dysfunction in adipocytes. Also, two important tyrosine nitrated sites on Akt were identified that may possibly be involved in regulating its activity. Finally, the lipid radical scavenger, POBN, displayed anti-obesity effects in HF fed mice and this effect was associated with amelioration of several metabolic parameters.

Page generated in 0.24 seconds