• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Secret sharing approaches for secure data warehousing and on-line analysis in the cloud / Approches de partage de clés secrètes pour la sécurisation des entrepôts de données et de l’analyse en ligne dans le nuage

Attasena, Varunya 22 September 2015 (has links)
Les systèmes d’information décisionnels dans le cloud Computing sont des solutions de plus en plus répandues. En effet, ces dernières offrent des capacités pour l’aide à la décision via l’élasticité des ressources pay-per-use du Cloud. Toutefois, les questions de sécurité des données demeurent une des principales préoccupations notamment lorsqu'il s’agit de traiter des données sensibles de l’entreprise. Beaucoup de questions de sécurité sont soulevées en terme de stockage, de protection, de disponibilité, d'intégrité, de sauvegarde et de récupération des données ainsi que des transferts des données dans un Cloud public. Les risques de sécurité peuvent provenir non seulement des fournisseurs de services de cloud computing mais aussi d’intrus malveillants. Les entrepôts de données dans les nuages devraient contenir des données sécurisées afin de permettre à la fois le traitement d'analyse en ligne hautement protégé et efficacement rafraîchi. Et ceci à plus faibles coûts de stockage et d'accès avec le modèle de paiement à la demande. Dans cette thèse, nous proposons deux nouvelles approches pour la sécurisation des entrepôts de données dans les nuages basées respectivement sur le partage vérifiable de clé secrète (bpVSS) et le partage vérifiable et flexible de clé secrète (fVSS). L’objectif du partage de clé cryptée et la distribution des données auprès de plusieurs fournisseurs du cloud permet de garantir la confidentialité et la disponibilité des données. bpVSS et fVSS abordent cinq lacunes des approches existantes traitant de partage de clés secrètes. Tout d'abord, ils permettent le traitement de l’analyse en ligne. Deuxièmement, ils garantissent l'intégrité des données à l'aide de deux signatures interne et externe. Troisièmement, ils aident les utilisateurs à minimiser le coût de l’entreposage du cloud en limitant le volume global de données cryptées. Sachant que fVSS fait la répartition des volumes des données cryptées en fonction des tarifs des fournisseurs. Quatrièmement, fVSS améliore la sécurité basée sur le partage de clé secrète en imposant une nouvelle contrainte : aucun groupe de fournisseurs de service ne peut contenir suffisamment de volume de données cryptées pour reconstruire ou casser le secret. Et cinquièmement, fVSS permet l'actualisation de l'entrepôt de données, même si certains fournisseurs de services sont défaillants. Pour évaluer l'efficacité de bpVSS et fVSS, nous étudions théoriquement les facteurs qui influent sur nos approches en matière de sécurité, de complexité et de coût financier dans le modèle de paiement à la demande. Nous validons également expérimentalement la pertinence de nos approches avec le Benchmark schéma en étoile afin de démontrer son efficacité par rapport aux méthodes existantes. / Cloud business intelligence is an increasingly popular solution to deliver decision support capabilities via elastic, pay-per-use resources. However, data security issues are one of the top concerns when dealing with sensitive data. Many security issues are raised by data storage in a public cloud, including data privacy, data availability, data integrity, data backup and recovery, and data transfer safety. Moreover, security risks may come from both cloud service providers and intruders, while cloud data warehouses should be both highly protected and effectively refreshed and analyzed through on-line analysis processing. Hence, users seek secure data warehouses at the lowest possible storage and access costs within the pay-as-you-go paradigm.In this thesis, we propose two novel approaches for securing cloud data warehouses by base-p verifiable secret sharing (bpVSS) and flexible verifiable secret sharing (fVSS), respectively. Secret sharing encrypts and distributes data over several cloud service providers, thus enforcing data privacy and availability. bpVSS and fVSS address five shortcomings in existing secret sharing-based approaches. First, they allow on-line analysis processing. Second, they enforce data integrity with the help of both inner and outer signatures. Third, they help users minimize the cost of cloud warehousing by limiting global share volume. Moreover, fVSS balances the load among service providers with respect to their pricing policies. Fourth, fVSS improves secret sharing security by imposing a new constraint: no cloud service provide group can hold enough shares to reconstruct or break the secret. Five, fVSS allows refreshing the data warehouse even when some service providers fail. To evaluate bpVSS' and fVSS' efficiency, we theoretically study the factors that impact our approaches with respect to security, complexity and monetary cost in the pay-as-you-go paradigm. Moreover, we also validate the relevance of our approaches experimentally with the Star Schema Benchmark and demonstrate its superiority to related, existing methods.
2

Cloud data storage security based on cryptographic mechanisms / La sécurité des données stockées dans un environnement cloud, basée sur des mécanismes cryptographiques

Kaaniche, Nesrine 15 December 2014 (has links)
Au cours de la dernière décennie, avec la standardisation d’Internet, le développement des réseaux à haut débit, le paiement à l’usage et la quête sociétale de la mobilité, le monde informatique a vu se populariser un nouveau paradigme, le Cloud. Le recours au cloud est de plus en plus remarquable compte tenu de plusieurs facteurs, notamment ses architectures rentables, prenant en charge la transmission, le stockage et le calcul intensif de données. Cependant, ces services de stockage prometteurs soulèvent la question de la protection des données et de la conformité aux réglementations, considérablement due à la perte de maîtrise et de gouvernance. Cette dissertation vise à surmonter ce dilemme, tout en tenant compte de deux préoccupations de sécurité des données, à savoir la confidentialité des données et l’intégrité des données. En premier lieu, nous nous concentrons sur la confidentialité des données, un enjeu assez considérable étant donné le partage de données flexible au sein d’un groupe dynamique d’utilisateurs. Cet enjeu exige, par conséquence, un partage efficace des clés entre les membres du groupe. Pour répondre à cette préoccupation, nous avons, d’une part, proposé une nouvelle méthode reposant sur l’utilisation de la cryptographie basée sur l’identité (IBC), où chaque client agit comme une entité génératrice de clés privées. Ainsi, il génère ses propres éléments publics et s’en sert pour le calcul de sa clé privée correspondante. Grâce aux propriétés d’IBC, cette contribution a démontré sa résistance face aux accès non autorisés aux données au cours du processus de partage, tout en tenant compte de deux modèles de sécurité, à savoir un serveur de stockage honnête mais curieux et un utilisateur malveillant. D’autre part, nous définissons CloudaSec, une solution à base de clé publique, qui propose la séparation de la gestion des clés et les techniques de chiffrement, sur deux couches. En effet, CloudaSec permet un déploiement flexible d’un scénario de partage de données ainsi que des garanties de sécurité solides pour les données externalisées sur les serveurs du cloud. Les résultats expérimentaux, sous OpenStack Swift, ont prouvé l’efficacité de CloudaSec, en tenant compte de l’impact des opérations cryptographiques sur le terminal du client. En deuxième lieu, nous abordons la problématique de la preuve de possession de données (PDP). En fait, le client du cloud doit avoir un moyen efficace lui permettant d’effectuer des vérifications périodiques d’intégrité à distance, sans garder les données localement. La preuve de possession se base sur trois aspects : le niveau de sécurité, la vérification publique, et les performances. Cet enjeu est amplifié par des contraintes de stockage et de calcul du terminal client et de la taille des données externalisées. Afin de satisfaire à cette exigence de sécurité, nous définissons d’abord un nouveau protocole PDP, sans apport de connaissance, qui fournit des garanties déterministes de vérification d’intégrité, en s’appuyant sur l’unicité de la division euclidienne. Ces garanties sont considérées comme intéressantes par rapport à plusieurs schémas proposés, présentant des approches probabilistes. Ensuite, nous proposons SHoPS, un protocole de preuve de possession de données capable de traiter les trois relations d’ensembles homomorphiques. SHoPS permet ainsi au client non seulement d’obtenir une preuve de la possession du serveur distant, mais aussi de vérifier que le fichier, en question, est bien réparti sur plusieurs périphériques de stockage permettant d’atteindre un certain niveau de la tolérance aux pannes. En effet, nous présentons l’ensemble des propriétés homomorphiques, qui étend la malléabilité du procédé aux propriétés d’union, intersection et inclusion / Recent technological advances have given rise to the popularity and success of cloud. This new paradigm is gaining an expanding interest, since it provides cost efficient architectures that support the transmission, storage, and intensive computing of data. However, these promising storage services bring many challenging design issues, considerably due to the loss of data control. These challenges, namely data confidentiality and data integrity, have significant influence on the security and performances of the cloud system. This thesis aims at overcoming this trade-off, while considering two data security concerns. On one hand, we focus on data confidentiality preservation which becomes more complex with flexible data sharing among a dynamic group of users. It requires the secrecy of outsourced data and an efficient sharing of decrypting keys between different authorized users. For this purpose, we, first, proposed a new method relying on the use of ID-Based Cryptography (IBC), where each client acts as a Private Key Generator (PKG). That is, he generates his own public elements and derives his corresponding private key using a secret. Thanks to IBC properties, this contribution is shown to support data privacy and confidentiality, and to be resistant to unauthorized access to data during the sharing process, while considering two realistic threat models, namely an honest but curious server and a malicious user adversary. Second, we define CloudaSec, a public key based solution, which proposes the separation of subscription-based key management and confidentiality-oriented asymmetric encryption policies. That is, CloudaSec enables flexible and scalable deployment of the solution as well as strong security guarantees for outsourced data in cloud servers. Experimental results, under OpenStack Swift, have proven the efficiency of CloudaSec in scalable data sharing, while considering the impact of the cryptographic operations at the client side. On the other hand, we address the Proof of Data Possession (PDP) concern. In fact, the cloud customer should have an efficient way to perform periodical remote integrity verifications, without keeping the data locally, following three substantial aspects : security level, public verifiability, and performance. This concern is magnified by the client’s constrained storage and computation capabilities and the large size of outsourced data. In order to fulfill this security requirement, we first define a new zero-knowledge PDP proto- col that provides deterministic integrity verification guarantees, relying on the uniqueness of the Euclidean Division. These guarantees are considered as interesting, compared to several proposed schemes, presenting probabilistic approaches. Then, we propose SHoPS, a Set-Homomorphic Proof of Data Possession scheme, supporting the 3 levels of data verification. SHoPS enables the cloud client not only to obtain a proof of possession from the remote server, but also to verify that a given data file is distributed across multiple storage devices to achieve a certain desired level of fault tolerance. Indeed, we present the set homomorphism property, which extends malleability to set operations properties, such as union, intersection and inclusion. SHoPS presents high security level and low processing complexity. For instance, SHoPS saves energy within the cloud provider by distributing the computation over multiple nodes. Each node provides proofs of local data block sets. This is to make applicable, a resulting proof over sets of data blocks, satisfying several needs, such as, proofs aggregation

Page generated in 0.0757 seconds