• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • 1
  • Tagged with
  • 26
  • 26
  • 14
  • 13
  • 10
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse et extraction de connaissances des bases de données spatio-temporelles

Zeitouni, Karine 01 December 2006 (has links) (PDF)
Ces dernières années ont vu une croissance phénoménale dans la production et la diffusion des données spatiales de sources aussi variées qu'hétérogènes. Cela a généré des besoins d'intégration dans des entrepôts de données et des perspectives d'analyse exploratoire et de fouille de données spatiales et spatiotemporelles. Nos travaux se placent dans ce contexte visant l'analyse et l'extraction des connaissances depuis les bases de données spatiotemporelles. Ils traitent différents aspects allant de la modélisation avancée des données spatiales, à la fouille de ces données en passant par leur intégration dans un entrepôt, l'optimisation des requêtes et l'analyse en ligne. Ainsi, nous décrivons nos approches pour la modélisation 3D, puis pour la modélisation spatiotemporelle d'objets mobiles. Ensuite, l'intégration de données spatiales est traitées selon deux aspects : l'intégration de formats et l'intégration de données par l'appariement géométrique. Une architecture d'entrepôt de données spatiales basée sur les standards XML et GML est proposée, puis dotée d'une technique d'optimisation de requêtes spatiales basée sur un cache sémantique. L'exploration des données spatiotemporelles a donné lieu à des solutions originales extension de l'OLAP. Enfin, différentes approches sont proposées pour la fouille de données spatiales. Nous avons ouvert le spectre de nos recherches à la fouille d'autres données complexes, telles que les données séquentielles et textuelles. Ces travaux ainsi que les développements futurs sont exposés dans ce mémoire.
2

Système de questions/réponses dans un contexte de business intelligence

Kuchmann-Beauger, Nicolas 15 February 2013 (has links) (PDF)
Le volume et la complexité des données générées par les systèmes d'information croissent de façon singulière dans les entrepôts de données. Le domaine de l'informatique décisionnelle (aussi appelé BI) a pour objectif d'apporter des méthodes et des outils pour assister les utilisateurs dans leur tâche de recherche d'information. En effet, les sources de données ne sont en général pas centralisées, et il est souvent nécessaire d'interagir avec diverses applications. Accéder à l'information est alors une tâche ardue, alors que les employés d'une entreprise cherchent généralement à réduire leur charge de travail. Pour faire face à ce constat, le domaine " Enterprise Search " s'est développé récemment, et prend en compte les différentes sources de données appartenant aussi bien au réseau privé d'entreprise qu'au domaine public (telles que les pages Internet). Pourtant, les utilisateurs de moteurs de recherche actuels souffrent toujours de du volume trop important d'information à disposition. Nous pensons que de tels systèmes pourraient tirer parti des méthodes du traitement naturel des langues associées à celles des systèmes de questions/réponses. En effet, les interfaces en langue naturelle permettent aux utilisateurs de rechercher de l'information en utilisant leurs propres termes, et d'obtenir des réponses concises et non une liste de documents dans laquelle l'éventuelle bonne réponse doit être identifiée. De cette façon, les utilisateurs n'ont pas besoin d'employer une terminologie figée, ni de formuler des requêtes selon une syntaxe très précise, et peuvent de plus accéder plus rapidement à l'information désirée. Un challenge lors de la construction d'un tel système consiste à interagir avec les différentes applications, et donc avec les langages utilisés par ces applications d'une part, et d'être en mesure de s'adapter facilement à de nouveaux domaines d'application d'autre part. Notre rapport détaille un système de questions/réponses configurable pour des cas d'utilisation d'entreprise, et le décrit dans son intégralité. Dans les systèmes traditionnels de l'informatique décisionnelle, les préférences utilisateurs ne sont généralement pas prises en compte, ni d'ailleurs leurs situations ou leur contexte. Les systèmes état-de-l'art du domaine tels que Soda ou Safe ne génèrent pas de résultats calculés à partir de l'analyse de la situation des utilisateurs. Ce rapport introduit une approche plus personnalisée, qui convient mieux aux utilisateurs finaux. Notre expérimentation principale se traduit par une interface de type search qui affiche les résultats dans un dashboard sous la forme de graphes, de tables de faits ou encore de miniatures de pages Internet. En fonction des requêtes initiales des utilisateurs, des recommandations de requêtes sont aussi affichées en sus, et ce dans le but de réduire le temps de réponse global du système. En ce sens, ces recommandations sont comparables à des prédictions. Notre travail se traduit par les contributions suivantes : tout d'abord, une architecture implémentée via des algorithmes parallélisés et qui prend en compte la diversité des sources de données, à savoir des données structurées ou non structurées dans le cadre d'un framework de questions/réponses qui peut être facilement configuré dans des environnements différents. De plus, une approche de traduction basée sur la résolution de contrainte, qui remplace le traditionnel langage-pivot par un modèle conceptuel et qui conduit à des requêtes multidimensionnelles mieux personnalisées. En outre, en ensemble de patrons linguistiques utilisés pour traduire des questions BI en des requêtes pour bases de données, qui peuvent être facilement adaptés dans le cas de configurations différentes.
3

Système de Questions/Réponses dans un contexte de Business Ingelligence

Kuchmann-Beauger, Nicolas 15 February 2013 (has links) (PDF)
Le volume et la complexité des données générées par les systèmes d'information croissent de façon singulière dans les entrepôts de données. Le domaine de l'informatique décisionnelle (aussi appelé BI) a pour objectif d'apporter des méthodes et des outils pour assister les utilisateurs dans leur tâche de recherche d'information. En effet, les sources de données ne sont en général pas centralisées, et il est souvent nécessaire d'interagir avec diverses applications. Accéder à l'information est alors une tâche ardue, alors que les employés d'une entreprise cherchent généralement à réduire leur charge de travail. Pour faire face à ce constat, le domaine "Enterprise Search" s'est développé récemment, et prend en compte les différentes sources de données appartenant aussi bien au réseau privé d'entreprise qu'au domaine public (telles que les pages Internet). Pourtant, les utilisateurs de moteurs de recherche actuels souffrent toujours de du volume trop important d'information à disposition. Nous pensons que de tels systèmes pourraient tirer parti des méthodes du traitement naturel des langues associées à celles des systèmes de questions/réponses. En effet, les interfaces en langue naturelle permettent aux utilisateurs de rechercher de l'information en utilisant leurs propres termes, et d'obtenir des réponses concises et non une liste de documents dans laquelle l'éventuelle bonne réponse doit être identifiée. De cette façon, les utilisateurs n'ont pas besoin d'employer une terminologie figée, ni de formuler des requêtes selon une syntaxe très précise, et peuvent de plus accéder plus rapidement à l'information désirée. Un challenge lors de la construction d'un tel système consiste à interagir avec les différentes applications, et donc avec les langages utilisés par ces applications d'une part, et d'être en mesure de s'adapter facilement à de nouveaux domaines d'application d'autre part. Notre rapport détaille un système de questions/réponses configurable pour des cas d'utilisation d'entreprise, et le décrit dans son intégralité. Dans les systèmes traditionnels de l'informatique décisionnelle, les préférences utilisateurs ne sont généralement pas prises en compte, ni d'ailleurs leurs situations ou leur contexte. Les systèmes état-de-l'art du domaine tels que Soda ou Safe ne génèrent pas de résultats calculés à partir de l'analyse de la situation des utilisateurs. Ce rapport introduit une approche plus personnalisée, qui convient mieux aux utilisateurs finaux. Notre expérimentation principale se traduit par une interface de type search qui affiche les résultats dans un dashboard sous la forme de graphes, de tables de faits ou encore de miniatures de pages Internet. En fonction des requêtes initiales des utilisateurs, des recommandations de requêtes sont aussi affichées en sus, et ce dans le but de réduire le temps de réponse global du système. En ce sens, ces recommandations sont comparables à des prédictions. Notre travail se traduit par les contributions suivantes : tout d'abord, une architecture implémentée via des algorithmes parallélisés et qui prend en compte la diversité des sources de données, à savoir des données structurées ou non structurées dans le cadre d'un framework de questions-réponses qui peut être facilement configuré dans des environnements différents. De plus, une approche de traduction basée sur la résolution de contrainte, qui remplace le traditionnel langage-pivot par un modèle conceptuel et qui conduit à des requêtes multidimensionnelles mieux personnalisées. En outre, en ensemble de patrons linguistiques utilisés pour traduire des questions BI en des requêtes pour bases de données, qui peuvent être facilement adaptés dans le cas de configurations différentes. Enfin, nous avons implémenté une application pour iPhone/iPad et une interface de type "HTML" qui démontre la faisabilité des différentes approches développées grâce à un ensemble de mesures d'évaluations pour l'élément principal (le composant de traduction) et un scénario d'évaluation pour le framework dans sa globalité. Dans ce but, nous introduisons un ensemble de requêtes pouvant servir à évaluer d'autres système de recherche d'information dans le domaine, et nous montrons que notre système se comporte de façon similaire au système de référence WolframAlpha, en fonction des paramètres d'évaluation.
4

Vers l'OLAP collaboratif pour la recommandation des analyses en ligne personnalisées / Towards Collaborative OLAP for recommending personalized OLAP analyses

Khemiri, Rym 23 September 2015 (has links)
La personnalisation vise à recueillir les intérêts, les préférences, les usages, les contraintes, le contexte, etc. souvent considérés comme faisant partie de ce que l'on appelle ''profil utilisateur'' pour ensuite les intégrer dans un système et les exploiter afin de permettre à l'utilisateur d'accéder rapidement aux informations les plus pertinentes pour lui. Par ailleurs, au sein d'une organisation, différents acteurs sont amenés à prendre des décisions à différents niveaux de responsabilité et ont donc besoin de réaliser des analyses à partir de l'entrepôt de données pour supporter la prise de décision. Ainsi, dans le contexte de cette communauté d'utilisateurs de l'entrepôt de données, la notion de collaboration émerge. Il est alors intéressant de combiner les concepts de personnalisation et de collaboration pour approcher au mieux les besoins des utilisateurs en leur recommandant des analyses en ligne pertinentes. L'objectif de ce mémoire est de proposer une approche collaborative pour l'OLAP, impliquant plusieurs utilisateurs, dirigée par un processus de personnalisation intégré aux systèmes décisionnels afin de pouvoir aider l'utilisateur final dans son processus d'analyse en ligne. Qu'il s'agisse de personnalisation du modèle d'entrepôt, de recommandation de requêtes décisionnelles ou de recommandation de chemins de navigation au sein des cubes de données, l'utilisateur a besoin d'un système décisionnel efficace qui l'aide dans sa démarche d'analyse en ligne. La finalité est de fournir à l'utilisateur des réponses pertinentes proches de ses besoins pour qu'il puisse mieux appréhender ses prises de décision. Nous nous sommes intéressés dans cette thèse à trois problèmes relevant de la prise en compte de l'utilisateur au sein des entrepôts de données et de l'OLAP. Nos contributions s'appuient sur la combinaison de techniques issues de la fouille de données avec les entrepôts et OLAP. Notre première contribution est une approche qui consiste à personnaliser les hiérarchies de dimensions afin d'obtenir des axes d'analyse nouveaux sémantiquement plus riches pouvant aider l'utilisateur à réaliser de nouvelles analyses non prévues par le modèle de l'entrepôt initial. En effet, nous relâchons la contrainte du modèle fixe de l'entrepôt, ce qui permet à l'utilisateur de créer de nouveaux axes d'analyse pertinents en tenant compte à la fois de ses contraintes et des connaissances enfouies dans les données entreposées. Notre approche repose sur une méthode d'apprentissage non-supervisé, le k-means contraint, capable de créer de nouveaux regroupements intéressants des données entreposées pouvant constituer un nouveau niveau de hiérarchie permettant de réaliser de nouvelles requêtes décisionnelles. L'intérêt est alors de pouvoir exploiter ces nouveaux niveaux de hiérarchie pour que les autres utilisateurs appartenant à la même communauté d'utilisateurs puissent en tirer profit, dans l'esprit d'un système collaboratif dans lequel chacun apporte sa pierre à l'édifice. Notre deuxième contribution est une approche interactive pour aider l'utilisateur à formuler de nouvelles requêtes décisionnelles pour construire des cubes OLAP pertinents en s'appuyant sur ses requêtes décisionnelles passées, ce qui lui permet d'anticiper sur ses besoins d'analyse futurs. Cette approche repose sur l'extraction des motifs fréquents à partir d'une charge de requêtes associée à un ou à un ensemble d'utilisateurs appartenant à la même communauté d'acteurs d'une organisation. Notre intuition est que la pertinence d'une requête décisionnelle est fortement corrélée avec la fréquence d'utilisation par l'utilisateur (ou un ensemble d'utilisateurs) des attributs associés à l'ensemble de ses (leurs) requêtes précédentes. Notre approche de formulation de requêtes (...) / The objective of this thesis is to provide a collaborative approach to the OLAP involving several users, led by an integrated personalization process in decision-making systems in order to help the end user in their analysis process. Whether personalizing the warehouse model, recommending decision queries or recommending navigation paths within the data cubes, the user need an efficient decision-making system that assist him. We were interested in three issues falling within data warehouse and OLAP personalization offering three major contributions. Our contributions are based on a combination of datamining techniques with data warehouses and OLAP technology. Our first contribution is an approach about personalizing dimension hierarchies to obtain new analytical axes semantically richer for the user that can help him to realize new analyzes not provided by the original data warehouse model. Indeed, we relax the constraint of the fixed model of the data warehouse which allows the user to create new relevant analysis axes taking into account both his/her constraints and his/her requirements. Our approach is based on an unsupervised learning method, the constrained k-means. Our goal is then to recommend these new hierarchy levels to other users of the same user community, in the spirit of a collaborative system in which each individual brings his contribution. The second contribution is an interactive approach to help the user to formulate new decision queries to build relevant OLAP cubes based on its past decision queries, allowing it to anticipate its future analysis needs. This approach is based on the extraction of frequent itemsets from a query load associated with one or a set of users belonging to the same actors in a community organization. Our intuition is that the relevance of a decision query is strongly correlated to the usage frequency of the corresponding attributes within a given workload of a user (or group of users). Indeed, our approach of decision queries formulation is a collaborative approach because it allows the user to formulate relevant queries, step by step, from the most commonly used attributes by all actors of the user community. Our third contribution is a navigation paths recommendation approach within OLAP cubes. Users are often left to themselves and are not guided in their navigation process. To overcome this problem, we develop a user-centered approach that suggests the user navigation guidance. Indeed, we guide the user to go to the most interesting facts in OLAP cubes telling him the most relevant navigation paths for him. This approach is based on Markov chains that predict the next analysis query from the only current query. This work is part of a collaborative approach because transition probabilities from one query to another in the cuboids lattice (OLAP cube) is calculated by taking into account all analysis queries of all users belonging to the same community. To validate our proposals, we present a support system user-centered decision which comes in two subsystems: (1) content personalization and (2) recommendation of decision queries and navigation paths. We also conducted experiments that showed the effectiveness of our analysis online user centered approaches using quality measures such as recall and precision.
5

Question Answering System in a Business Intelligence Context / Système de questions/réponses dans un contexte de business intelligence

Kuchmann-Beauger, Nicolas 15 February 2013 (has links)
Le volume et la complexité des données générées par les systèmes d’information croissent de façon singulière dans les entrepôts de données. Le domaine de l’informatique décisionnelle (aussi appelé BI) a pour objectif d’apporter des méthodes et des outils pour assister les utilisateurs dans leur tâche de recherche d’information. En effet, les sources de données ne sont en général pas centralisées, et il est souvent nécessaire d’interagir avec diverses applications. Accéder à l’information est alors une tâche ardue, alors que les employés d’une entreprise cherchent généralement à réduire leur charge de travail. Pour faire face à ce constat, le domaine « Enterprise Search » s’est développé récemment, et prend en compte les différentes sources de données appartenant aussi bien au réseau privé d’entreprise qu’au domaine public (telles que les pages Internet). Pourtant, les utilisateurs de moteurs de recherche actuels souffrent toujours de du volume trop important d’information à disposition. Nous pensons que de tels systèmes pourraient tirer parti des méthodes du traitement naturel des langues associées à celles des systèmes de questions/réponses. En effet, les interfaces en langue naturelle permettent aux utilisateurs de rechercher de l’information en utilisant leurs propres termes, et d’obtenir des réponses concises et non une liste de documents dans laquelle l’éventuelle bonne réponse doit être identifiée. De cette façon, les utilisateurs n’ont pas besoin d’employer une terminologie figée, ni de formuler des requêtes selon une syntaxe très précise, et peuvent de plus accéder plus rapidement à l’information désirée. Un challenge lors de la construction d’un tel système consiste à interagir avec les différentes applications, et donc avec les langages utilisés par ces applications d’une part, et d’être en mesure de s’adapter facilement à de nouveaux domaines d’application d’autre part. Notre rapport détaille un système de questions/réponses configurable pour des cas d’utilisation d’entreprise, et le décrit dans son intégralité. Dans les systèmes traditionnels de l’informatique décisionnelle, les préférences utilisateurs ne sont généralement pas prises en compte, ni d’ailleurs leurs situations ou leur contexte. Les systèmes état-de-l’art du domaine tels que Soda ou Safe ne génèrent pas de résultats calculés à partir de l’analyse de la situation des utilisateurs. Ce rapport introduit une approche plus personnalisée, qui convient mieux aux utilisateurs finaux. Notre expérimentation principale se traduit par une interface de type search qui affiche les résultats dans un dashboard sous la forme de graphes, de tables de faits ou encore de miniatures de pages Internet. En fonction des requêtes initiales des utilisateurs, des recommandations de requêtes sont aussi affichées en sus, et ce dans le but de réduire le temps de réponse global du système. En ce sens, ces recommandations sont comparables à des prédictions. Notre travail se traduit par les contributions suivantes : tout d’abord, une architecture implémentée via des algorithmes parallélisés et qui prend en compte la diversité des sources de données, à savoir des données structurées ou non structurées dans le cadre d’un framework de questions/réponses qui peut être facilement configuré dans des environnements différents. De plus, une approche de traduction basée sur la résolution de contrainte, qui remplace le traditionnel langage-pivot par un modèle conceptuel et qui conduit à des requêtes multidimensionnelles mieux personnalisées. En outre, en ensemble de patrons linguistiques utilisés pour traduire des questions BI en des requêtes pour bases de données, qui peuvent être facilement adaptés dans le cas de configurations différentes. / The amount and complexity of data generated by information systems keep increasing in Warehouses. The domain of Business Intelligence (BI) aims at providing methods and tools to better help users in retrieving those data. Data sources are distributed over distinct locations and are usually accessible through various applications. Looking for new information could be a tedious task, because business users try to reduce their work overload. To tackle this problem, Enterprise Search is a field that has emerged in the last few years, and that takes into consideration the different corporate data sources as well as sources available to the public (e.g. World Wide Web pages). However, corporate retrieval systems nowadays still suffer from information overload. We believe that such systems would benefit from Natural Language (NL) approaches combined with Q&A techniques. Indeed, NL interfaces allow users to search new information in their own terms, and thus obtain precise answers instead of turning to a plethora of documents. In this way, users do not have to employ exact keywords or appropriate syntax, and can have faster access to new information. Major challenges for designing such a system are to interface different applications and their underlying query languages on the one hand, and to support users’ vocabulary and to be easily configured for new application domains on the other hand. This thesis outlines an end-to-end Q&A framework for corporate use-cases that can be configured in different settings. In traditional BI systems, user-preferences are usually not taken into account, nor are their specific contextual situations. State-of-the art systems in this field, Soda and Safe do not compute search results on the basis of users’ situation. This thesis introduces a more personalized approach, which better speaks to end-users’ situations. Our main experimentation, in this case, works as a search interface, which displays search results on a dashboard that usually takes the form of charts, fact tables, and thumbnails of unstructured documents. Depending on users’ initial queries, recommendations for alternatives are also displayed, so as to reduce response time of the overall system. This process is often seen as a kind of prediction model. Our work contributes to the following: first, an architecture, implemented with parallel algorithms, that leverages different data sources, namely structured and unstructured document repositories through an extensible Q&A framework, and this framework can be easily configured for distinct corporate settings; secondly, a constraint-matching-based translation approach, which replaces a pivot language with a conceptual model and leads to more personalized multidimensional queries; thirdly, a set of NL patterns for translating BI questions in structured queries that can be easily configured in specific settings. In addition, we have implemented an iPhone/iPad™ application and an HTML front-end that demonstrate the feasibility of the various approaches developed through a series of evaluation metrics for the core component and scenario of the Q&A framework. To this end, we elaborate on a range of gold-standard queries that can be used as a basis for evaluating retrieval systems in this area, and show that our system behave similarly as the well-known WolframAlpha™ system, depending on the evaluation settings.
6

Intégration de données temps-réel issues de capteurs dans un entrepôt de données géo-décisionnel

Mathieu, Jean 17 April 2018 (has links)
Nous avons pu, au cours des dernières années, assister à une augmentation du nombre de capteurs utilisés pour mesurer des phénomènes de plus en plus variés. En effet, nous pouvons aujourd'hui utiliser les capteurs pour mesurer un niveau d'eau, une position (GPS), une température et même le rythme cardiaque d'un individu. La grande diversité de capteurs fait d'eux aujourd'hui des outils par excellence en matière d'acquisition de données. En parallèle à cette effervescence, les outils d'analyse ont également évolué depuis les bases de données transactionnelles et ont mené à l'apparition d'une nouvelle famille d’outils, appelés systèmes d’analyse (systèmes décisionnels), qui répond à des besoins d’analyse globale sur les données. Les entrepôts de données et outils OLAP (On-Line Analytical Processing), qui font partie de cette famille, permettent dorénavant aux décideurs d'analyser l'énorme volume de données dont ils disposent, de réaliser des comparaisons dans le temps et de construire des graphiques statistiques à l’aide de simples clics de la souris. Les nombreux types de capteurs peuvent certainement apporter de la richesse à une analyse, mais nécessitent de longs travaux d'intégration pour les amener jusqu'à un entrepôt géo-décisionnel, qui est au centre du processus de prise de décision. Les différents modèles de capteurs, types de données et moyens de transférer les données sont encore aujourd'hui des obstacles non négligeables à l'intégration de données issues de capteurs dans un entrepôt géo-décisionnel. Également, les entrepôts de données géo-décisionnels actuels ne sont pas initialement conçus pour accueillir de nouvelles données sur une base fréquente. Puisque l'utilisation de l'entrepôt par les utilisateurs est restreinte lors d'une mise à jour, les nouvelles données sont généralement ajoutées sur une base hebdomadaire, mensuelle, etc. Il existe pourtant des entrepôts de données capables d'être mis à jour plusieurs fois par jour sans que les performances lors de leur exploitation ne soient atteintes, les entrepôts de données temps-réel (EDTR). Toutefois, cette technologie est encore aujourd’hui peu courante, très coûteuse et peu développée. Ces travaux de recherche visent donc à développer une approche permettant de publier et standardiser les données temps-réel issues de capteurs et de les intégrer dans un entrepôt géo-décisionnel conventionnel. Une stratégie optimale de mise à jour de l'entrepôt a également été développée afin que les nouvelles données puissent être ajoutées aux analyses sans que la qualité de l'exploitation de l'entrepôt par les utilisateurs ne soit remise en cause. / In the last decade, the use of sensors for measuring various phenomenons has greatly increased. As such, we can now make use of sensors to measure GPS position, temperature and even the heartbeats of a person. Nowadays, the wide diversity of sensor makes them the best tools to gather data. Along with this effervescence, analysis tools have also advanced since the creation of transactional databases, leading to a new category of tools, analysis systems (Business Intelligence (BI)), which respond to the need of the global analysis of the data. Data warehouses and OLAP (On-Line Analytical Processing) tools, which belong to this category, enable users to analyze big volumes of data, execute time-based requests and build statistic graphs in a few simple mouse clicks. Although the various types of sensor can surely enrich any analysis, such data requires heavy integration processes to be driven into the data warehouse, centerpiece of any decision-making process. The different data types produced by sensors, sensor models and ways to transfer such data are even today significant obstacles to sensors data streams integration in a geo-decisional data warehouse. Also, actual geo-decisional data warehouses are not initially built to welcome new data on a high frequency. Since the performances of a data warehouse are restricted during an update, new data is usually added weekly, monthly, etc. However, some data warehouses, called Real-Time Data Warehouses (RTDW), are able to be updated several times a day without letting its performance diminish during the process. But this technology is not very common, very costly and in most of cases considered as "beta" versions. Therefore, this research aims to develop an approach allowing to publish and normalize real-time sensors data streams and to integrate it into a classic data warehouse. An optimized update strategy has also been developed so the frequent new data can be added to the analysis without affecting the data warehouse performances.
7

Dans quelle mesure une démarche d’intelligence économique permettrait-elle une réduction du risque de crédit bancaire ? / To what extent would an economic intelligence approach reduce the risk of bank credit ?

N'damas, Henri-Blaise 03 July 2017 (has links)
Les systèmes d’information bancaires, outils incontournables de la stratégie des banques, sont devenus complets et complexes. Et les systèmes d’information décisionnels ou stratégiques deviennent de plus en plus présents.Or, il persiste encore des inefficacités en matière de conception des systèmes d’informations, dues à une conception sauvage ou plutôt une construction sauvage des systèmes d’informations stratégiques, avec une mise à l’écart systématique des utilisateurs finals.Une solution parait être de s’appuyer sur l’intelligence économique pour tenter de résoudre le problème de la construction de ces systèmes d’information stratégiques, et donc d’améliorer la prise de décision. Car, le système d’informations stratégique, noyau des systèmes décisionnels, est le cœur même du système d’intelligence économique.Notre thèse est qu’une démarche d’intelligence économique appliquée à la conception des systèmes d’informations bancaires permettrait de réduire le « risque prêt ». Ceci, précisément, dans le domaine de la banque de détail et pour la clientèle des particuliers, des professionnels et des entrepreneurs.- Risque pour le client qui ne doit pas se lancer dans des remboursements qu’il ne pourra assumer, s’engager dans un projet de prêt qui ne correspondrait pas aux enjeux qu’il s’est définis ;- Risque évidemment pour la banque qui ne tient pas à accumuler des clients non solvables et ce qui ne correspondrait pas non plus à des enjeux définis par les décideurs de la banque.Après avoir rappelé les particularités de la banque et la complexité de son environnement, nous montrerons en quoi l'approche actuelle de la gestion des risques au sein des banques nous paraît « incomplète » et segmentée, et de ce fait, perfectible notamment pour ce qui concerne la clientèle des particuliers et des professionnels. Ensuite, nous comptons proposer des règles méthodologiques pour la conception de systèmes d’informations stratégiques bancaires, ainsi qu’un modèle d’architecture d’un tel système prenant en compte les besoins de l’utilisateur final qui sera, dans le cas de notre thèse, le décisionnaire d’un dossier de crédit ou bien le conseiller bancaire, voire l’analyste du risque de crédit. Enfin, après avoir établi ce modèle d'architecture de système d’informations stratégiques, nous comparerons ce qu'il permettrait d'améliorer, relativement à l'existant. Notre thèse se situe au carrefour, au confluent, d'une thèse en sciences de gestion, plus particulièrement en finance bancaire, et d’une thèse en système d'informations et en informatique ; et elle s’appuie en grande partie sur notre expérience professionnelle dans le secteur bancaire en France.Ainsi, avec le domaine bancaire, nous souhaitons explorer un nouveau domaine d’application des recherches en intelligence économique, notamment en liaison avec les résultats issus des travaux de l’équipe de recherches SITE (« Modélisation et Développement de Systèmes d’Intelligence Economique ») du LORIA (Laboratoire Lorrain de Recherches en Informatique et ses Applications) pour ce qui concerne la conception de systèmes d’informations pour l’intelligence économique.Après avoir présenté le concept d’intelligence économique et le processus décisionnel, nous montrerons les spécificités de la banque et de son système d’informations. Ensuite, nous expliciterons les difficultés de la gestion du risque de crédit au sein des banques avant de présenter nos propositions pour la mise en place d’un système d’informations stratégiques permettant d’améliorer la gestion du risque de crédit bancaire. / Bank Information Systems, key tools in banking strategies, have become comprehensive and complex. And the decision-making or strategic information systems are playing an increasingly more important role.Nevertheless, some inefficiencies in the conception of information systems still continue to exist, due to the uncontrolled design or rather construction of strategic information systems, systematically alienating the end-user.One solution seems to be to rely on economic intelligence to attempt to solve the matter of the construction of those strategic information systems, and consequently to improve decision-making. Because, the strategic information system, the core of decision-making systems, is the heart itself of the economic intelligence system.Our theory is that an approach of economic intelligence applied to the conception of information systems in banking would allow the reduction of the “loan risk”. This specifically in the sector of retail banking and for the individual, professional and contractor customer.- Risk for the customer who should not start loan payments which he cannot cover, or commit to loan projects which do not match the stakes he would have set himself.- Risk obviously for the bank which is not willing to accumulate uncreditworthy customers, and which would not match either the stakes set by the bank decision-makers.After putting emphasis on the distinctive features of the bank and the complexity of its environment, we will show the evidence that the current approach to risk management inside banks seems “incomplete” and fragmented, and consequently, where there is room for improvement particularly for individual and professional customers.Then, we intend to suggest some methodological rules for the conception of strategic information systems in banking, as well as a business model of such a system taking into account the needs of the end-user who will be, as shown in this present thesis, the decision-maker of a credit file or the bank adviser, or even the credit risk analyst. Finally, after drawing up this model of strategic information systems, we will compare how it could improve on the existing one. Our thesis is situated at a crossroads, at a confluence, of a thesis in management sciences, more particularly in bank finance, and of a thesis in information systems, and in computer science; and it leans largely on our professional experience in the banking sector in France.Thus, along with the banking sector, we wish to explore the new field of application of research in economic intelligence, particularly linked to the results stemming from the work by the research team SITE of LORIA as far as the conception of information systems for economic intelligence is concerned.After introducing the concept of economic intelligence and the decision-support process (chapter no. 1), we will outline the specificities of the banking sector and its information systems (chapter no. 2). Then we will clarify the difficulties of credit risk management within banks (chapter no. 3) before submitting our proposals for the implementation of a strategic information system enabling the improvement of credit risk management in banking (chapter no. 4).
8

Optimisation de la performance des entrepôts de données XML par fragmentation et répartition

Mahboubi, Hadj 08 December 2008 (has links) (PDF)
Les entrepôts de données XML forment une base intéressante pour les applications décisionnelles qui exploitent des données hétérogènes et provenant de sources multiples. Cependant, les Systèmes de Gestion de Bases de Données (SGBD) natifs XML actuels présentent des limites en termes de volume de données gérable, d'une part, et de performance des requêtes d'interrogation complexes, d'autre part. Il apparaît donc nécessaire de concevoir des méthodes pour optimiser ces performances.<br /><br />Pour atteindre cet objectif, nous proposons dans ce mémoire de pallier conjointement ces limitations par fragmentation puis par répartition sur une grille de données. Pour cela, nous nous sommes intéressés dans un premier temps à la fragmentation des entrepôts des données XML et nous avons proposé des méthodes qui sont à notre connaissance les premières contributions dans ce domaine. Ces méthodes exploitent une charge de requêtes XQuery pour déduire un schéma de fragmentation horizontale dérivée.<br /><br />Nous avons tout d'abord proposé l'adaptation des techniques les plus efficaces du domaine relationnel aux entrepôts de données XML, puis une méthode de fragmentation originale basée sur la technique de classification k-means. Cette dernière nous a permis de contrôler le nombre de fragments. Nous avons finalement proposé une approche de répartition d'un entrepôt de données XML sur une grille. Ces propositions nous ont amené à proposer un modèle de référence pour les entrepôts de données XML qui unifie et étend les modèles existants dans la littérature.<br /><br />Nous avons finalement choisi de valider nos méthodes de manière expérimentale. Pour cela, nous avons conçu et développé un banc d'essais pour les entrepôts de données XML : XWeB. Les résultats expérimentaux que nous avons obtenus montrent que nous avons atteint notre objectif de maîtriser le volume de données XML et le temps de traitement de requêtes décisionnelles complexes. Ils montrent également que notre méthode de fragmentation basée sur les k-means fournit un gain de performance plus élevé que celui obtenu par les méthodes de fragmentation horizontale dérivée classiques, à la fois en terme de gain de performance et de surcharge des algorithmes.
9

Entrepôts de données NoSQL orientés colonnes dans un environnement cloud / Columnar NoSQL data warehouses in the cloud environment.

Dehdouh, Khaled 05 November 2015 (has links)
Le travail présenté dans cette thèse vise à proposer des approches pour construire et développer des entrepôts de données selon le modèle NoSQL orienté colonnes. L'intérêt porté aux modèles NoSQL est motivé d'une part, par l'avènement des données massives et d'autre part, par l'incapacité du modèle relationnel, habituellement utilisés pour implémenter les entrepôts de données, à permettre le passage à très grande échelle. En effet, les différentes modèles NoSQL sont devenus des standards dans le stockage et la gestion des données massives. Ils ont été conçus à l'origine pour construire des bases de données dont le modèle de stockage est le modèle « clé/valeur ». D'autres modèles sont alors apparus pour tenir compte de la variabilité des données : modèles orienté colonne, orienté document et orienté graphe. Pour développer des entrepôts de données massives, notre choix s'est porté sur le modèle NoSQL orienté colonnes car il apparaît comme étant le plus approprié aux traitements des requêtes décisionnelles qui sont définies en fonction d'un ensemble de colonnes (mesures et dimensions) issues de l'entrepôt. Cependant, le modèle NoSQL en colonnes ne propose pas d'opérateurs de type analyse en ligne (OLAP) afin d'exploiter les entrepôts de données.Nous présentons dans cette thèse des solutions innovantes sur la modélisation logique et physique des entrepôts de données NoSQL en colonnes. Nous avons proposé une approche de construction des cubes de données qui prend compte des spécificités de l'environnement du stockage orienté colonnes. Par ailleurs, afin d'exploiter les entrepôts de données en colonnes, nous avons défini des opérateurs d'agrégation permettant de créer des cubes OLAP. Nous avons proposé l'opérateur C-CUBE (Columnar-Cube) permettant de construire des cubes OLAP stockés en colonnes dans un environnement relationnel en utilisant la jointure invisible. MC-CUBE (MapReduce Columnar-Cube) pour construire des cubes OLAP stockés en colonnes dans un environnement distribué exploitant la jointure invisible et le paradigme MapReduce pour paralléliser les traitements. Et enfin, nous avons développé l'opérateur CN-CUBE (Columnar-NoSQL Cube) qui tient compte des faits et des dimensions qui sont groupés dans une même table lors de la génération de cubes à partir d'un entrepôt dénormalisé selon un certain modèle logique. Nous avons réalisé une étude de performance des modèles de données dimensionnels NoSQL et de nos opérateurs OLAP. Nous avons donc proposé un index de jointure en étoile adapté aux entrepôts de données NoSQL orientés colonnes, baptisé C-SJI (Columnar-Star Join Index). Pour évaluer nos propositions, nous avons défini un modèle de coût pour mesurer l'impact de l'apport de cet index. D'autre part, nous avons proposé un modèle logique baptisé FLM (Flat Logical Model) pour implémenter des entrepôts de données NoSQL orientés colonnes et de permettre une meilleure prise en charge par les SGBD NoSQL de cette famille.Pour valider nos différentes contributions, nous avons développé une plate-forme logicielle CG-CDW (Cube Generation for Columnar Data Warehouses) qui permet de générer des cubes OLAP à partir d'entrepôts de données en colonnes. Pour terminer et afin d'évaluer nos contributions, nous avons tout d'abord développé un banc d'essai décisionnel NoSQL en colonnes (CNSSB : Columnar NoSQL Star Schema Benchmark) basé sur le banc d'essai SSB (Star Schema Benchmark), puis, nous avons procédé à plusieurs tests qui ont permis de montrer l'efficacité des différents opérateurs d'agrégation que nous avons proposé. / The work presented in this thesis aims at proposing approaches to build data warehouses by using the columnar NoSQL model. The use of NoSQL models is motivated by the advent of big data and the inability of the relational model, usually used to implement data warehousing, to allow data scalability. Indeed, the NoSQL models are suitable for storing and managing massive data. They are designed to build databases whose storage model is the "key/value". Other models, then, appeared to account for the variability of the data: column oriented, document oriented and graph oriented. We have used the column NoSQL oriented model for building massive data warehouses because it is more suitable for decisional queries that are defined by a set of columns (measures and dimensions) from warehouse. However, the NoSQL model columns do not offer online analysis operators (OLAP) for exploiting the data warehouse.We present in this thesis new solutions for logical and physical modeling of columnar NoSQL data warehouses. We have proposed a new approach that allows building data cubes by taking the characteristics of the columnar environment into account. Thus, we have defined new cube operators which allow building columnar cubes. C-CUBE (Columnar-CUBE) for columnar relational data warehouses. MC-CUBE (MapReduce Columnar-CUBE) for columnar NoSQL data warehouses when measures and dimensions are stored in different tables. Finally, CN-CUBE (Columnar NoSQL-CUBE) when measures and dimensions are gathered in the same table according a new logical model that we proposed. We have studied the NoSQL dimensional data model performance and our OLAP operators, and we have proposed a new star join index C-SJI (Columnar-Star join index) suitable for columnar NoSQL data warehouses which store measures and dimensions separately. To evaluate our contribution, we have defined a cost model to measure the impact of the use of this index. Furthermore, we have proposed a logic model called FLM (Flat Logical Model) to represent a data cube NoSQL oriented columns and enable a better management by columnar NoSQL DBMS.To validate our contributions, we have developed a software framework CG-CDW (Cube Generation for Data Warehouses Columnar) to generate OLAP cubes from columnar data warehouses. Also, we have developed a columnar NoSQL decisional benchmark CNSSB (Columnar NoSQL Star Schema Benchmark) based on the SSB and finally, we conducted several tests that have shown the effectiveness of different aggregation operators that we proposed.
10

Techniques d'extraction de connaissances en biodiversité / Biodiversity knowledge extraction techniques (BioKET)

Inthasone, Somsack 02 April 2015 (has links)
Les données sur la biodiversité sont généralement représentées et stockées dans différents formats. Cela rend difficile pour les biologistes leur agrégation et leur intégration afin d'identifier et découvrir des connaissances pertinentes dans le but, par exemple, de classer efficacement des spécimens. Nous présentons ici l'entrepôt de données BioKET issu de la consolidation de données hétérogènes de différentes sources. Actuellement, le champ d'application de BioKET concerne la botanique. Sa construction a nécessité, notamment, d'identifier et analyser les ontologies et bases botaniques existantes afin de standardiser et lier les descripteurs utilisés dans BioKET. Nous avons également développé une méthodologie pour la construction de terminologies taxonomiques, ou thésaurus, à partir d'ontologies de plantes et d'informations géo-spatiales faisant autorité. Les données de biodiversité et botanique de quatre fournisseurs majeurs et de deux systèmes d'informations géo-spatiales ont été intégrées dans BioKET. L'utilité d'un tel entrepôt de données a été démontrée par l'application de méthodes d'extraction de modèles de connaissances, basées sur les approches classiques Apriori et de la fermeture de Galois, à des ensembles de données générées à partir de BioKET. En utilisant ces méthodes, des règles d'association et des clusters conceptuels ont été extraits pour l'analyse des statuts de risque de plantes endémiques au Laos et en Asie du Sud-Est. En outre, BioKET est interfacé avec d'autres applications et ressources, tel que l'outil GeoCAT pour l'évaluation géo-spatiale des facteurs de risques, afin de fournir un outil d'analyse performant pour les données de biodiversité. / Biodiversity data are generally stored in different formats. This makes it difficult for biologists to combine and integrate them in order to retrieve useful information and discover novel knowledge for the purpose of, for example, efficiently classifying specimens. In this work, we present the BioKET data warehouse which is a consolidation of heterogeneous data stored in different formats and originating from different sources. For the time being, the scope of BioKET is botanical. Its construction required, among others things, to identify and analyze existing botanical ontologies, to standardize and relate terms in BioKET. We also developed a methodology for mapping and defining taxonomic terminologies, that are controlled vocabularies with hierarchical structures from authoritative plant ontologies, Google Maps, and OpenStreetMap geospatial information system. Data from four major biodiversity and botanical data providers and from the two previously mentioned geospatial information systems were then integrated in BioKET. The usefulness of such a data warehouse was demonstrated by applying classical knowledge pattern extraction methods, based on the classical Apriori and Galois closure based approaches, to several datasets generated from BioKET extracts. Using these methods, association rules and conceptual bi-clusters were extracted to analyze the risk status of plants endemic to Laos and Southeast Asia. Besides, BioKET is interfaced with other applications and resources, like the GeoCAT Geospatial Conservation Assessment Tool, to provide a powerful analysis tool for biodiversity data.

Page generated in 0.087 seconds