• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formation de silicium poreux appliquée à la réalisation de caissons isolants dans le silicium / Porous silicon formation applied to insulating boxes realized into silicon

Semai, Jugurtha 20 December 2010 (has links)
Le développement du marché des appareils de communication nomades, a nécessité l'intégration de composants passifs et actifs sur du silicium via des montages « hybrides ».Ceci a amené le LMP partenaire de l'entreprise STMicroelectronics à rechercher des solutions pour une intégration « monolithique ». Le silicium micro/mésoporeux est un candidat potentiel pour satisfaire les exigences de cette intégration. Ce travail traite de la réalisation de caissons profonds de silicium poreux sur silicium résistif de type P 30-50 Ω.cm et N 37-46Ω.cm. L'utilisation de l'acide acétique comme solvant industriellement compatible nous a permis de réaliser des structures micro/mésoporeuses. L'intégrité mécanique de nos échantillons a été étudiée via la mesure de la porosité en fonction de l'épaisseur. Ainsi des caissons poreux avec des épaisseurs de plus de 400 µm et 50 % de porosité ont été fabriqués.La réalisation d'une couche N⁺ sur du silicium type N 37-46 Ω.cm a permis la mise en œuvre de doubles couches composées d'une dizaine de micromètres de micro/mésoporeuse sur une couche de 200 µ.m de silicium macroporeux. Des changements importants ont été observés par addition d'une très faible quantité d'un tensioactif (triton X-I00®) a notre solution électrolytique et où des doubles couches ont été obtenues sur silicium type P 30-50 Ω.cm. / The rapid expansion of wireless devices caused a tremendous demand of the development of active and passive devices integration on silicon via « hybrid » systems. The search of a« monolithic » integration has led the LMP in partnership with STMicroelectronics to focus on this topic. Micro/Mesoporous silicon is a good candidate to fulfill the requirements to achieve this purpose. The present work deals with the realization of thick porous silicon layers on low doped P type (30-50 Ω.cm) and N type Si (37-46 Ω.cm). The use of a particular solution based on HF-H₂O and acetic acid allowed the implementation of micro/mesoporous Si structures. The mechanical integrity is studied via the porosity and the PS layer thickness.Thus layers with a thickness up to 400 µm have been implemented with a porosity of 50 % on P Type Si samples. Double layers with micro/mesoporous layer of tenth micrometers on a macroporous layer stack up to 200 µm have been realized on N-Type Si samples via the realization of an N⁺ layer by phosphorous implantation. Important changes occurred when a tiny amount of surfactant (triton X-I00®) has been introduced into our organic electrolyte and allowed the implementation of double layers on P type Si.
2

Synthesis of Conjugated Polymers and Adhesive Properties of Thin Films in OPV Devices / Synthèse de Copolymères Conjugués et Mesure de l’Adhésion des Films Minces dans les Cellules Solaires Organiques

Gregori, Alberto 12 November 2015 (has links)
La production d’énergie avec des cellules photovoltaïques organiques (OPV) est une des applications les plus prometteuses des semi-conducteurs organiques, en raison de leur compatibilité avec les substrats flexibles permettant des produits légers, peu chers et décoratifs. Pendant longtemps, poly(3-hexylthiophène) (P3HT) a été le polymère de choix dans l’OPV combiné au [6,6]-phényl-C61-butanoate de méthyle (PC61BM) comme accepteur. Toutefois, des recherches récentes ont porté sur des polymères avec meilleures absorption et processabilité, qui peuvent assurer des rendements et des durées de vie plus élevés. Des rendements de conversion en puissance (PCE) au-dessus de 11% ont récemment été démontrés. Cette thèse rapporte sur la synthèse et la caractérisation de deux séries de polymères dits à faible bande interdite, LBGs "push-pull" (ou donneur-accepteur), constitués de l'unité donneuse 4,4-bis(2-ethylhexyl)-5,5'-dithieno[3,2-b:2',3'-d]silole (DTS) combinée au 3,6-dithiophén-2-yl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) ou au 5,7-di(thiényl)thiéno[3,4-b]pyrazines (DTP), comme unité acceptrice. Toutes les molécules et les polymères ont été caractérisés chimiquement et leur propriétés optoelectroniques, morphologiques et photovoltaïques ont été determinées. La série DTS-DPP a été choisie parce qu'elle est représentative d'un grand nombre de polymères LBG et a fourni un modèle facilement accessible pour évaluer l'importance de la chaîne latérale utilisée sur leur propriétés optoélectroniques et thermiques. Les premières études sur les dispositifs à base de DTS-DPP:PC61BM ont été menées, pour déterminer les propriétés photovoltaïques. Le meilleur dispositif permet d’obtenir un PCE de 1,7% avec JSC de 5,9 mA cm-2, VOC de 0,54 V et FF de 0,58. La série DTS-DTP a été choisie pour la stabilité chimique élevée des deux unités et pour la facilité de substitution des groupes latéraux. La polymérisation a partiellement abouti, en donnant seulement des oligomères. La caractérisation chimique a pu être effectuée, mais leur application dans l’OPV n'a pas été explorée. En termes de stabilité, les mécanismes de défaillance électrique des dispositifs OPV ont été étudiés, montrant une méconnaissance de leur stabilité mécanique. Les contraintes caractéristiques de chaque couche mince présentes dans les cellules solaires organiques constituent la force motrice à l’origine de la délamination des interfaces faibles ou même leur decohésion, causant une perte de l'intégrité et des performances du dispositif. Une technique pour sonder les couches ou les interfaces fragiles dans les cellules solaires polymère:fullerene est présentée. Elle a été développée par l'établissement d'un nouveau set-up pour le test pull-off, développé en utilisant un dispositif à géométrie inverse, de structure verre/ITO/ZnO/P3HT:PC61BM/PEDOT:PSS/Ag. Les dispositifs délaminés ont montré que le point le plus faible est localisé à l'interface AL/HTL, en bon accord avec la littérature. La technique a été étendue en variant les deux couches sensibles, en utilisant differents polymères LBG pour l’AL (PSBTBT et PDTSTzTz) en combinaison avec deux formulations de PEDOT:PSS, CleviosTM HTL Solar à base d'eau et un nouveau HTL Solar 2 à base de solvant organique. Une différence entre la contrainte à la rupture des dispositifs avec différentes combinaisons de AL et HTL est visible, suggérant différents chemins de fracture, tel que confirmé par la caractérisation de surface et qui pourrait être corrélée avec la différence de comportement de la couche active avec les deux formulations de PEDOT:PSS. Une autre voie adoptée, a été d’introduire une couche d’interface de copolymère à blocs amphiphile afin d'améliorer la compatibilité des deux couches. Cette stratégie n'a pas abouti et la nouvelle architecture présente une adhésion réduite. La poursuite de l’amélioration des procédés de fabrication de ces dispositifs pourrait faire de cette nouvelle architecture, une alternative viable. / Organic photovoltaic (OPV) devices are one of the most promising applications of organic semiconductors due to their compatibility with flexible plastic substrates resulting in light weight, inexpensive and decorative products. For a long time poly(3-hexylthiophene) (P3HT) has been the polymer of choice in OPV devices in combination with [6,6]-phenyl-C61-butyric acid methylester (PC61BM) as acceptor. However, recent research has focused on polymers with improved absorbance and processability that can ensure higher efficiencies and longer lifetimes (Low BandGap polymers (LBGs)). This has been fully demonstrated with a power conversion efficiency (PCE) above 11%. This thesis reports synthesis and characterization of two series of so-called “push-pull” (or donor-acceptor) LBGs based on the donor unit 4,4′-bis(2-ethylhexyl)-5,5’-dithieno[3,2-b:2′,3′-d]silole (DTS) and either 3,6-dithiophen-2-yl-2, 5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP) or 5,7-di(thienyl)thieno[3,4-b]pyrazines (DTP), as acceptor unit. All π-conjugated molecules and polymers were characterized by chemical investigation and their optoelectronic, morphological, and photovoltaic properties are reported. The DTS-DPP series was chosen because representative of a large number of LBG polymers and provided an easily accessible and useful template to discover the importance of the type of side-chain used on the polymer optoelectronic and thermal properties. First studies on DTS-DPP:PC61BM devices have been conducted, in order to investigate any effect on their photovoltaic properties. The best device obtained had a PCE of 1.7% with JSC of 5.9 mA•cm-2, VOC of 0.54 V and FF of 0.58. The DTS-DTP series was chosen for the high stability of the two units and for the ease of substitution of the side-groups. The synthesis was partially successful and only oligomers were obtained. Nonetheless, chemical characterization was performed but their application in OPV was not explored. In terms of device stability, the electrical failure mechanisms in OPV devices have been investigated, while little is known about their mechanical stability. The characteristic thin film stresses of each layer present in organic solar cells, in combination with other possible fabrication, handling and operational stresses, provide the mechanical driving force for delamination of weak interfaces or even their de-cohesion, leading to a loss of device integrity and performance. A technique to probe weak layers or interfaces in inverted polymer:fullerene solar cells is presented. It was developed by establishing a new set-up for the pull-off test. The technique was developed using inverted device, with the structure glass/ITO/ZnO/P3HT:PC61BM/PEDOT:PSS/Ag. The delaminated devices showed that the weakest point was localized at the active layer/hole transporting layer interface, in good agreement with the literature. The technique was extended varying both sensitive layers, using different p-type low bandgap (co)polymers for the active layer (PSBTBT and PDTSTzTz) in combination with two different PEDOT:PSS formulations, the water based CleviosTM HTL Solar and a new organic solvent based HTL Solar 2. The half-devices produced upon destructive testing have been characterized by contact angle measurement, AFM and XPS to locate the fracture point. A difference in the stress at break for devices made with different combinations of active and hole transporting layers is visible, suggesting different fracture paths, as confirmed by surface characterization and could be correlated to the different behavior of the active layer with the two PEDOT:PSS formulations. Another solution adopted, it had been the introduction of amphiphilic block-copolymer interlayer to enhance the compatibility of the two layers. This strategy was not successful and the new architecture showed reduced adhesion strength. Further development of device processing could make this new architecture a viable alternative.

Page generated in 0.0456 seconds