Spelling suggestions: "subject:"integer"" "subject:"nteger""
381 |
Encryption in Delocalized Access SystemsAhlström, Henrik, Skoglund, Karl-Johan January 2008 (has links)
<p>The recent increase in performance of embedded processors has enabled the use of computationally heavy asymmetric cryptography in small and power efficient embedded systems. The goal of this thesis is to analyze whether it is possible to use this type of cryptography to enhance the security in access systems.</p><p>This report contains a literature study of the complications related to access systems and their functionality. Also a basic introduction to cryptography is included.</p><p>Several cryptographic algorithms were implemented using the public library LibTomCrypt and benchmarked on an ARM7-processor platform. The asymmetric coding schemes were ECC and RSA. The tested symmetric algorithms included AES, 3DES and Twofish among others. The benchmark considered both codesize and speed of the algorithms.</p><p>The two asymmetric algorithms, ECC and RSA, are possible to be used in an ARM7 based access system. Although, both technologies can be configured to finish the calculations within a reasonable time-frame of 10 Sec, ECC archives a higher security level for the same execution time. Therefore, an implementation of ECC would be preferable since it is faster and requires less resources. Some further suggestions of improvements to the implementation is discussed in the final chapters.</p>
|
382 |
Methods and Applications in Integer Programming : All-Integer Column Generation and Nurse SchedulingRönnberg, Elina January 2008 (has links)
<p>Integer programming can be used to provide solutionsto complex decision and planning problems occurring in a wide varietyof situations. Applying integer programming to a real life problembasically involves a first phase where a mathematical model isconstructed, and a second phase where the problem described by themodel is solved. While the nature of the challenges involved in therespective two phases differ, the strong relationship between theproperties of models, and which methods that are appropriate for theirsolution, links the two phases. This thesis constitutes of threepapers, of which the third one considers the modeling phase, while thefirst and second one consider the solution phase.</p><p> </p><p>Many applications of column generation yield master problems of setpartitioning type, and the first and second papers presentmethodologies for solving such problems. The characteristics of themethodologies presented are that all successively found solutions arefeasible and integral, where the retention of integrality is a majordistinction from other column generation methods presented in theliterature.</p><p> </p><p>The third paper concerns nurse scheduling and describes the results ofa pilot implementation of a scheduling tool at a Swedish nursing ward.This paper focuses on the practical aspects of modeling and thechallenges of providing a solution to a complex real life problem.</p>
|
383 |
Biorefienry network design under uncertaintyReid, Korin J. M. 08 June 2015 (has links)
This work integrates perennial feedstock yield modeling using climate model data from current and future climate scenarios, land use datasets, transportation network data sets, Geographic Information Systems (GIS) tools, and Mixed integer linear programming (MILP) optimization models to examine biorefinery network designs in the southeastern United States from an overall systems perspective. Both deterministic and stochastic cases are modeled. Findings indicate that the high transportation costs incurred by biorefinery networks resulting from the need to transport harvested biomass from harvest location to processing facilities can be mitigated by performing initial processing steps in small scale mobile units at the cost of increased unit production costs associated with operating at smaller scales.
Indeed, it can be financially advantageous to move the processing units instead of the harvested biomass, particularly when considering a 10-year planning period (typical switchgrass stand life). In this case, the mobile processing supply chain configuration provides added flexibility to respond to year-to-year variation in the geographic distribution of switchgrass yields. In order to capture the effects of variation in switchgrass yields and incorporate it in optimization models, yield modeling was conducted for both current and future climate scenarios. (In general profits are lower in future climate scenarios). Thus, both the effects of annual variation in weather patterns and varying climate scenarios on optimization model decisions can be observed.
|
384 |
The therapist scheduling problem for patients with fixed appointment timesWang, Huan, master of science in engineering 27 February 2012 (has links)
This report presents a series of models that can be used to find weekly schedules for therapists who provide ongoing treatment to patients scattered around a geographical region. In all cases, the patients’ appointment times and visit days are known prior to the beginning of the planning horizon. Variations in the model include single vs. multiple home bases, homogeneous vs. heterogeneous therapists, lunch break requirements, and a nonlinear cost structure for mileage reimbursement and overtime. The single home base and homogeneous therapist cases proved to be easy to solve and so were not investigated. This left two cases of interest: the first includes only lunch breaks while the second adds overtime and mileage reimbursement. In all, 40 randomly generated data sets were solved that consisted of either 15 or 20 therapists and between roughly 300 and 540 visits over five days. For each instance, we were able to obtain the minimum cost of providing home healthcare services for both models using CPLEX 12.2. The results showed that CPU time increases more rapidly than total cost as the total number of visits grows. In general, data sets with therapists who have different starting and ending locations are more difficult to solve than those whose therapists have the same home base. / text
|
385 |
The vehicle routing problem on tree networks : exact and heuristic methodsKumar, Roshan 16 March 2015 (has links)
The Vehicle Routing Problem (VRP) is a classical problem in logistics that has been well studied by the operations research and transportation science communities. VRPs are defined as follows. Given a transportation network with a depot, a set of pickup or delivery locations, and a set of vehicles to service these locations: find a collection of routes starting and ending at the depot, such that (i) the customer's demand at a node is satisfied by exactly one vehicle, (ii) the total demand satisfied by a vehicle does not exceed its capacity, and (iii) the total distance traveled by the vehicles is minimized. This problem is especially hard to solve because of the presence of sub--tours, which can be exponential in number. In this dissertation, a special case of the VRP is considered -- where the underlying network has a tree structure (TVRP). Such tree structures are found in rural areas, river networks, assembly lines of manufacturing systems, and in networks where the customer service locations are all located off a main highway. Solution techniques for TVRPs that explicitly consider their tree structure are discussed in this dissertation. For example, TVRPs do not contain any sub-tours, thereby making it possible to develop faster solution methods. The variants that are studied in this dissertation include TVRPs with Backhauls, TVRPs with Heterogeneous Fleets, TVRPs with Duration Constraints, and TVRPs with Time Windows. Various properties and observations that hold true at optimality for these problems are discussed. Integer programming formulations and solution techniques are proposed. Additionally, heuristic methods and conditions for lower bounds are also detailed. Based on the proposed methodology, extensive computational analysis are conducted on networks of different sizes and demand distributions. / text
|
386 |
A column generation approach for stochastic optimization problemsWang, Yong Min 28 August 2008 (has links)
Not available / text
|
387 |
Petroleum refinery scheduling with consideration for uncertaintyHamisu, Aminu Alhaji 07 1900 (has links)
Scheduling refinery operation promises a big cut in logistics cost, maximizes efficiency, organizes allocation of material and resources, and ensures that production meets targets set by planning team. Obtaining accurate and reliable schedules for execution in refinery plants under different scenarios has been a serious challenge. This research was undertaken with the aim to develop robust methodologies and solution procedures to address refinery scheduling problems with uncertainties in process parameters.
The research goal was achieved by first developing a methodology for short-term crude oil unloading and transfer, as an extension to a scheduling model reported by Lee et al. (1996). The extended model considers real life technical issues not captured in the original model and has shown to be more reliable through case studies. Uncertainties due to disruptive events and low inventory at the end of scheduling horizon were addressed. With the extended model, crude oil scheduling problem was formulated under receding horizon control framework to address demand uncertainty. This work proposed a strategy called fixed end horizon whose efficiency in terms of performance was investigated and found out to be better in comparison with an existing approach.
In the main refinery production area, a novel scheduling model was developed. A large scale refinery problem was used as a case study to test the model with scheduling horizon discretized into a number of time periods of variable length. An equivalent formulation with equal interval lengths was also presented and compared with the variable length formulation. The results obtained clearly show the advantage of using variable timing. A methodology under self-optimizing control (SOC) framework was then developed to address uncertainty in problems involving mixed integer formulation. Through case study and scenarios, the approach has proven to be efficient in dealing with uncertainty in crude oil composition.
|
388 |
Formulation space search for two-dimensional packing problemsLopez Soto, Claudia Orquidea January 2013 (has links)
The two-dimension packing problem is concerned with the arrangement of items without overlaps inside a container. In particular we have considered the case when the items are circular objects, some of the general examples that can be found in the industry are related with packing, storing and transportation of circular objects. Although there are several approaches we want to investigate the use of formulation space search. Formulation space search is a fairly recent method that provides an easy way to escape from local optima for non-linear problems allowing to achieve better results. Despite the fact that it has been implemented to solve the packing problem with identical circles, we present an improved implementation of the formulation space search that gives better results for the case of identical and non-identical circles, also considering that they are packed inside different shaped containers, for which we provide the needed modifications for an appropriate implementation. The containers considered are: the unit circle, the unit square, two rectangles with different dimension (length 5, width 1 and length 10 width 1), a right-isosceles triangle, a semicircle and a right-circular quadrant. Results from the tests conducted shown several improvements over the best previously known for the case of identical circles inside three different containers: a right-isosceles triangle, a semicircle and a circular quadrant. In order to extend the scope of the formulation space search approach we used it to solve mixed-integer non-linear problems, in particular those with zero-one variables. Our findings suggest that our implementation provides a competitive way to solve these kind of problems.
|
389 |
Solving the generalized assignment problem : a hybrid Tabu search/branch and bound algorithmWoodcock, Andrew John January 2007 (has links)
The research reported in this thesis considers the classical combinatorial optimization problem known as the Generalized Assignment Problem (GAP). Since the mid 1970's researchers have been developing solution approaches for this particular type of problem due to its importance both in practical and theoretical terms. Early attempts at solving GAP tended to use exact integer programming techniques such as Branch and Bound. Although these tended to be reasonably successful on small problem instances they struggle to cope with the increase in computational effort required to solve larger instances. The increase in available computing power during the 1980's and 1990's coincided with the development of some highly efficient heuristic approaches such as Tabu Search (TS), Genetic Algorithms (GA) and Simulated Annealing (SA). Heuristic approaches were subsequently developed that were able to obtain high quality solutions to larger and more complex instances of GAP. Most of these heuristic approaches were able to outperform highly sophisticated commercial mathematical programming software since the heuristics tend to be tailored to the problem and therefore exploit its structure. A new approach for solving GAP has been developed during this research that combines the exact Branch and Bound approach and the heuristic strategy of Tabu Search to produce a hybrid algorithm for solving GAP. This approach utilizes the mathematical programming software Xpress-MP as a Branch and Bound solver in order to solve sub-problems that are generated by the Tabu Search guiding heuristic. Tabu Search makes use of memory structures that record information about attributes of solutions visited during the search. This information is used to guide the search and in the case of the hybrid algorithm to generate sub problems to pass to the Branch and Bound solver. The new algorithm has been developed, imp lemented and tested on benchmark test problems that are extremely challenging and a comprehensive report and analysis of the experimentation is reported in this thesis.
|
390 |
A mixed-integer model for optimal grid-scale energy storage allocationHarris, Chioke Bem 03 January 2011 (has links)
To meet ambitious upcoming state renewable portfolio standards (RPSs), respond to customer demand for “green” electricity choices and to move towards more renewable, domestic and clean sources of energy, many utilities and power producers are accelerating deployment of wind, solar photovoltaic and solar thermal generating facilities. These sources of electricity, particularly wind power, are highly variable and difficult to forecast. To manage this variability, utilities can increase availability of fossil fuel-dependent backup generation, but this approach will eliminate some of the emissions benefits associated with renewable energy. Alternately, energy storage could provide needed ancillary services for renewables. Energy storage could also support other operational needs for utilities, providing greater system resiliency, zero emission ancillary services for other generators, faster responses than current backup generation and lower marginal costs than some fossil fueled alternatives. These benefits might justify the high capital cost associated with energy storage. Quantitative analysis of the role energy storage can have in improving economic dispatch, however, is limited. To examine the potential benefits of energy storage availability, a generalized unit commitment model of thermal generating units and energy storage facilities is developed. Initial study will focus on the city of Austin, Texas. While Austin Energy’s proximity to and collaborative partnerships with The University of Texas at Austin facilitated collaboration, their ambitious goal to produce 30-35% of their power from renewable sources by 2020, as well as their continued leadership in smart grid technology implementation makes them an excellent initial test case. The model developed here will be sufficiently flexible that it can be used to study other utilities or coherent regions. Results from the energy storage deployment scenarios studied here show that if all costs are ignored, large quantities of seasonal storage are preferred, enabling storage of plentiful wind generation during winter months to be dispatched during high cost peak periods in the summer. Such an arrangement can yield as much as $94 million in yearly operational cost savings, but might cost hundreds of billions to implement. Conversely, yearly cost reductions of $40 million can be achieved with one CAES facility and a small fleet of electrochemical storage devices. These results indicate that small quantities of storage could have significant operational benefit, as they manage only the highest cost hours of the year, avoiding the most expensive generators while improving utilization of renewable generation throughout the year. Further study using a modified unit commitment model can help to narrow the performance requirements of storage, clarify optimal storage portfolios and determine the optimal siting of this storage within the grid. / text
|
Page generated in 0.2925 seconds