Spelling suggestions: "subject:"integrals"" "subject:"ntegrals""
141 |
Asymptotic enumeration via singularity analysisLladser, Manuel Eugenio, January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains x, 227 p.; also includes graphics Includes bibliographical references (p. 224-227). Available online via OhioLINK's ETD Center
|
142 |
Integration in locally compact spaces by means of uniformly distributed sequencesPost, Karel Albertus. January 1900 (has links)
Proefschrift--Eindhoven. / "Stellingen": [6] p. inserted. Summary in Dutch. Bibliography: p. 77-78.
|
143 |
Nonlinear evolution equations and optimization problems in Banach spacesLee, Haewon. January 2005 (has links)
Thesis (Ph.D.)--Ohio University, August, 2005. / Title from PDF t.p. Includes bibliographical references (p. 79-93)
|
144 |
On a general class of Polynomials Ln (x, y) of two variables suggested by the Polynomials Ln (x, y) of Ragab and Ln (x) of Prabhakar and RekhaKhan, Mumtaz Ahmad, Ahmad, Khvurshed 25 September 2017 (has links)
No description available.
|
145 |
Path Integral Approach to Levy Flights and Hindered RotationsJanakiraman, Deepika January 2013 (has links) (PDF)
Path integral approaches have been widely used for long in both quantum mechanics as well as statistical mechanics. In addition to being a tool for obtaining the probability distributions of interest(wave functions in the case of quantum mechanics),these methods are very instructive and offer great insights into the problem. In this thesis, path integrals are extensively employed to study some very interesting problems in both equilibrium and non-equilibrium statistical mechanics. In the non-equilibrium regime, we have studied, using a path integral approach, a very interesting class of anomalous diffusion, viz. the L´evy flights. In equilibrium statistical mechanics, we have evaluated the partition function for a class of molecules referred to as the hindered rotors which have a barrier for internal rotation. Also, we have evaluated the exact quantum statistical mechanical propagator for a harmonic potential with a time-dependent force constant, valid under certain conditions.
Diffusion processes have attracted a great amount of scientific attention because of their presence in a wide range of phenomena. Brownian motion is the most widely known class of diffusion which is usually driven by thermal noise. However ,there are other classes of diffusion which cannot be classified as Brownian motion and therefore, fall under the category of Anomalous diffusion. As the name suggests, the properties of this class of diffusion are very different from those for usual Brownian motion. We are interested in a particular class of anomalous diffusion referred to as L´evy flights in which the step sizes taken by the particle during the random walk are obtained from what is known as a L´evy distribution. The diverging mean square displacement is a very typical feature for L´evy flights as opposed to a finite mean square displacement with a linear dependence on time in the case of Brownian motion. L´evy distributions are characterized by an index α where 0 <α ≤ 2. When α =2, the distribution becomes a Gaussian and when α=1, it reduces to a Cauchy/Lorentzian distribution.
In the overdamped limit of friction, the probability density or the propagator associated with L´evy flights can be described by a position space fractional Fokker-Planck equation(FFPE)[1–3]. Jespersen et al. [4]have solved the FFPE in the Fourier domain to obtain the propagator for free L´evy flight(absence of an external potential) and L´evy flights in linear and harmonic potentials. We use a path integral technique to study L´evy flights. L´evy distributions rarely have a compact analytical expression in the position space. However, their Fourier transformations are rather simple and are given by e−D │p│α where D determines the width of the distribution. Due to the absence of a simple analytical expression, attempts in the past to study L´evy flights using path integrals in the position space [5, 6] have not been very successful. In our approach, we have tried to make use of the elegant representation of the L´evy distribution in the Fourier space and therefore, we write the propagator in terms of a two-dimensional path integral –one over paths in the position space(x)and the other over paths in the Fourier space(p). We shall refer to this space as the ‘phase space’. Such a representation is similar to the Hamiltonian path integral of quantum mechanics which was introduced by Garrod[7]. If we try to perform the path integral over Fourier variables first, then what remains is the usual position space path integral for L´evy flights which is rather difficult to solve. Instead, we perform the position space path integral first which results in expressions which are rather simple to handle. Using this approach, we have obtained the propagators for free L´evy flight and L´evy flights in linear and harmonic potentials in the over damped limit [8]. The results obtained by this method are in complete agreement with those obtained by Jesepersen et al. [4]. In addition to these results, we were also able to obtain the exact propagator for L´evy flights in a harmonic potential with a time-dependent force constant which has not been reported in the literature. Another interesting problem that we have considered in the over damped limit is to obtain the probability distribution for the area under the trajectory of a L´evy particle. The distributions, again, were obtained for free L´evy flight and for L´evy flights subjected to linear and harmonic potentials. In the harmonic potential, we have considered situations where the force constant is time-dependent as well as time-independent.
Like in the case of the over damped limit, the probability distribution for L´evy flights in the under damped limit of friction can also be described using a fractional Fokker-Planck equation, although in the full phase space. However, this has not yet been solved for any general value of α to obtain the complete propagator in terms of both position and velocity. Using our path integral approach, the exact full phase space propagators have been obtained for all values of α for free L´evy flights as well as in the presence of linear and harmonic potentials[8].
The results that we obtain are all exact when the potential is at the most harmonic. If the potential is higher than harmonic, like the cubic potential, we have used a semi classical evaluation where, we extremize the action using an optimal path and further, account for fluctuations around this optimal path. Such potentials are very useful in describing the problem of escape of a particle over a barrier. The barrier crossing problem is very extensively studied for Brownian motion (Kramers problem) and the associated rate constant has been calculated in a variety of methods, including the path integral approach. We are interested in its L´evy analogue where we consider the escape of a particle driven by a L´evy noise over a barrier. On extremizing the action which depends both on phase space variables, we arrived at optimal paths in both the position space as well as the space of the conjugate variable, p. The paths form an infinite hierarchy of instant on paths, all of which have to be accounted for in order to obtain the correct rate constant. Care has to be taken while accounting for fluctuations around the optimal path since these fluctuations should be independent of the time-translational mode of the instant on paths. We arrived at an ‘orthogonalization’ scheme to perform the same. Our procedure is valid in the limit when the barrier height is large(or when the diffusion constant is very small), which would ensure that there is small but a steady flux of particles over the barrier even at very large times. Unlike the traditional Kramers rate expression, the rate constant for barrier crossing assisted by L´evy noise does not have an exponential dependence on the barrier height. The rate constant for wide range of α, other than for those very close to α = 2, are proportional to Dμ where, µ ≈ 1 and D is the diffusion constant. These observations are consistent with the simulation results obtained by Chechkin et al. [9]. In addition, our approach when applied to Brownian motion, gives the correct dependence on D.
In equilibrium statistical mechanics we have considered two problems. In the first one, we have evaluated the imaginary time propagator for a harmonic oscillator with a time-dependent force constant(ω2(t))exactly, when ω2(t) is of the form λ2(t) - λ˙(t)where λ(t) is any arbitrary function of t. We have made use of Hamiltonian path integrals for this. The second problem that we considered was the evaluation of the partition function for hindered rotors. Hindered rotors are molecules which have a barrier for internal rotation. The molecule behaves like free rotor when the barrier is very small in comparison with the thermal energy, and when the barrier is very high compared to thermal energy, it behaves like a harmonic oscillator. Many methods have been developed in order to obtain the partition function for a hindered rotor. However, most of them are some what ad-hoc since they interpolate between free-rotor and the harmonic oscillator limits. We have obtained the approximate partition function by writing it as the trace of the density matrix and performing a harmonic approximation around each point of the potential[10]. The density matrix for a harmonic potential is in turn obtained from a path integral approach[11]. The results that we obtain using this method are very close to the exact results for the problem obtained numerically. Also, we have devised a proper method to take the indistinguishability of particles into account in internal rotation which becomes very crucial while calculating the partition function at low temperatures.
|
146 |
A history of the definite integralKallio, Bruce Victor January 1966 (has links)
The definite integral has an interesting history. In this thesis we trace its development from the time of ancient Greece (500-200 B. C.) until the modern period. We place special emphasis on the work done in the nineteenth century and on the work of Lebesgue (1902).
The thesis is divided into four parts arranged roughly chronologically. The first part traces the developments in the period from the fifth century B. C. until the eighteenth century A. D. Secondary sources were used in writing this history. The second part recounts the contributions of the nineteenth century. The original works of Cauchy, Dirichlet, Riemann, Darboux, and Stieltjes are examined, the third part is concerned with the development of measures in the latter part of the nineteenth century. This work leads to the Lebesgue integral. The final part is a brief survey of modern ideas. / Science, Faculty of / Mathematics, Department of / Graduate
|
147 |
Weak type inequalities in noncommutative Lp-spaces / Inégalités de type faible dans les espaces Lp non-commutatifsCadilhac, Léonard 03 July 2019 (has links)
Cette thèse vise à développer des outils d'analyse harmonique non-commutative. Elle porte plus précisément sur les inégalités de Khintchine non-commutatives et les intégrales singulières à valeurs opérateur. La première partie est dédiée à des questions d'interpolation des espaces Lp classiques. On généralise et on énonce de nouvelles caractérisations des espaces interpolés entre espaces Lp. Dans une seconde partie, on démontre une forme des inégalités de Khintchine non-commutatives valides dans tous les espaces interpolés entre espace Lp. Celle-ci permet d’unifier les cas p < 2 et p > 2 ainsi que de traiter les espaces Lp faibles, même pour p = 1 ou 2. En s'appuyant sur la première partie, on caractérise les espaces dans lesquels les formules usuelles pour les inégalités de Khintchine sont valides. Dans une dernière partie, on donne une preuve simplifiée de l'inégalité de type (1,1) faible pour les intégrales singulières non-commutatives, un résultat précédemment obtenu par Parcet. Cette simplification nous permet de retrouver rapidement deux autres résultats connus : la pseudolocalisation Lp et l’inégalité de type faible pour les intégrales singulières non-commutatives dont le noyau est à valeurs dans un espace de Hilbert. / The purpose of this thesis is to develop tools of noncommutative harmonic analysis. More precisely, it deals with noncommutative Khintchine inequalities and operator-valued singular integrals. The first part is dedicated to questions of interpolation between classical Lp-spaces. We generalize and state new characterisations of interpolation spaces between Lp-spaces. In a second part, we introduce a form of the noncommutative Khintchine inequalities which holds in every interpolation space between two Lp-spaces. It enables us to unify the cases p < 2 and p > 2 and to deal with weak Lp-spaces even when p = 1 or 2. By relying on the first part, we characterize spaces in which the usual formulas for Khintchine inequalities hold. In a last part, we give a simplified proof of the weak boundedness of noncommutative singular integrals, a result previously obtained by Parcet. This simplification allows us to recover quickly two results: the Lp pseudolocalisation and the weak type inequality for noncommutative singular integrals associated to Hilbert-valued kernels.
|
148 |
Noether, partial noether operators and first integrals for systemsNaeem, Imran 21 April 2009 (has links)
The notions of partial Lagrangians, partial Noether operators and partial Euler-Lagrange
equations are used in the construction of first integrals for ordinary differential equations
(ODEs) that need not be derivable from variational principles. We obtain a Noetherlike
theorem that provides the first integral by means of a formula which has the same
structure as the Noether integral. However, the invariance condition for the determination
of the partial Noether operators is different as we have a partial Lagrangian and as a
result partial Euler-Lagrange equations. In order to investigate the effectiveness of the
partial Lagrangian approach, some models such as the oscillator systems both linear and
nonlinear, Emden and Ermakov-pinnery equations and the Hamiltonian system with two
degrees of freedom are considered in this work. We study a general linear system of
two second-order ODEs with variable coefficients. Note that, a Lagrangian exists for the
special case only but, in general, the system under consideration does not have a standard
Lagrangian. However, partial Lagrangians do exist for all such equations in the absence
of Lagrangians. Firstly, we classify all the Noether and partial Noether operators for the
case when the system admits a standard Lagrangian. We show that the first integrals
that result due to the partial Noether approach is the same as for the Noether approach.
First integrals are then constructed by the partial Noether approach for the general case
when there is in general no Lagrangian for the system of two second-order ODEs with variable coefficients. We give an easy way of constructing first integrals for such systems
by utilization of a partial Noether’s theorem with the help of partial Noether operators
associated with a partial Lagrangian.
Furthermore, we classify all the potential functions for which we construct first integrals
for a system with two degrees of freedom. Moreover, the comparison of Lagrangian and
partial Lagrangian approaches for the two degrees of freedom Lagrangian system is also
given.
In addition, we extend the idea of a partial Lagrangian for the perturbed ordinary differential
equations. Several examples are constructed to illustrate the definition of a partial Lagrangian in the approximate situation. An approximate Noether-like theorem which
gives the approximate first integrals for the perturbed ordinary differential equations
without regard to a Lagrangian is deduced.
We study the approximate partial Noether operators for a system of two coupled
nonlinear oscillators and the approximate first integrals are obtained for both resonant
and non-resonant cases. Finally, we construct the approximate first integrals for a system
of two coupled van der Pol oscillators with linear diffusive coupling. Since the system
mentioned above does not satisfy a standard Lagrangian, the approximate first integrals
are still constructed by invoking an approximate Noether-like theorem with the help of
approximate partial Noether operators. This approach can give rise to further studies
in the construction of approximate first integrals for perturbed equations without a
variational principle.
|
149 |
Comonotonicity and Choquet integrals of Hermitian operators and their applications.Vourdas, Apostolos 20 January 2016 (has links)
yes / In a quantum system with d-dimensional Hilbert space, the Q-function of a Hermitian positive
semide nite operator , is de ned in terms of the d2 coherent states in this system. The Choquet
integral CQ( ) of the Q-function of , is introduced using a ranking of the values of the Q-function,
and M obius transforms which remove the overlaps between coherent states. It is a gure of merit
of the quantum properties of Hermitian operators, and it provides upper and lower bounds to
various physical quantities in terms of the Q-function. Comonotonicity is an important concept
in the formalism, which is used to formalize the vague concept of physically similar operators.
Comonotonic operators are shown to be bounded, with respect to an order based on Choquet
integrals. Applications of the formalism to the study of the ground state of a physical system, are
discussed. Bounds for partition functions, are also derived.
|
150 |
Numerical electromagnetic modeling of a small aperture helical-fed reflector antennaCheng, Chin-Yuan January 1998 (has links)
No description available.
|
Page generated in 0.0628 seconds